在多核集群上并行处理数据密集型应用程序的性能问题

Vignesh T. Ravi, G. Agrawal
{"title":"在多核集群上并行处理数据密集型应用程序的性能问题","authors":"Vignesh T. Ravi, G. Agrawal","doi":"10.1109/CCGRID.2009.83","DOIUrl":null,"url":null,"abstract":"The deluge of available data for analysis demands the need to scale the performance of data mining implementations. With the current architectural trends, one of the major challenges today is achieving programmability and performance for data mining applications on multi-core machines and cluster of multi-core machines. To address this problem, we have been developing a runtime framework, FREERIDE, that enables  parallel execution of data mining  and data analysis tasks.The contributions of this paper are two-fold: 1) This paper describes and evaluates various shared-memory parallelization techniques developed in our run-time system on a cluster of multi-cores, and  2) We report on a detailed performance study to understand why certain parallelization techniques out-perform othertechniques for a particular application.","PeriodicalId":118263,"journal":{"name":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Performance Issues in Parallelizing Data-Intensive Applications on a Multi-core Cluster\",\"authors\":\"Vignesh T. Ravi, G. Agrawal\",\"doi\":\"10.1109/CCGRID.2009.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The deluge of available data for analysis demands the need to scale the performance of data mining implementations. With the current architectural trends, one of the major challenges today is achieving programmability and performance for data mining applications on multi-core machines and cluster of multi-core machines. To address this problem, we have been developing a runtime framework, FREERIDE, that enables  parallel execution of data mining  and data analysis tasks.The contributions of this paper are two-fold: 1) This paper describes and evaluates various shared-memory parallelization techniques developed in our run-time system on a cluster of multi-cores, and  2) We report on a detailed performance study to understand why certain parallelization techniques out-perform othertechniques for a particular application.\",\"PeriodicalId\":118263,\"journal\":{\"name\":\"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2009.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2009.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

可供分析的大量可用数据要求对数据挖掘实现的性能进行扩展。根据当前的架构趋势,当今的主要挑战之一是在多核机器和多核机器集群上实现数据挖掘应用程序的可编程性和性能。为了解决这个问题,我们一直在开发一个运行时框架FREERIDE,它支持并行执行数据挖掘和数据分析任务。本文的贡献有两个方面:1)本文描述并评估了在我们的多核集群运行时系统中开发的各种共享内存并行化技术,2)我们报告了详细的性能研究,以了解为什么某些并行化技术在特定应用程序中优于其他技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Issues in Parallelizing Data-Intensive Applications on a Multi-core Cluster
The deluge of available data for analysis demands the need to scale the performance of data mining implementations. With the current architectural trends, one of the major challenges today is achieving programmability and performance for data mining applications on multi-core machines and cluster of multi-core machines. To address this problem, we have been developing a runtime framework, FREERIDE, that enables  parallel execution of data mining  and data analysis tasks.The contributions of this paper are two-fold: 1) This paper describes and evaluates various shared-memory parallelization techniques developed in our run-time system on a cluster of multi-cores, and  2) We report on a detailed performance study to understand why certain parallelization techniques out-perform othertechniques for a particular application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信