多特征在工业物联网场景下持续认证中的适用性研究

Guozhu Zhao, Pinchang Zhang, Lisheng Ma
{"title":"多特征在工业物联网场景下持续认证中的适用性研究","authors":"Guozhu Zhao, Pinchang Zhang, Lisheng Ma","doi":"10.1109/NaNA53684.2021.00041","DOIUrl":null,"url":null,"abstract":"By exploiting characteristics from channel state information (CSI) profiles and the behavioral habits of users during their routine work processes in IIoT systems, this paper proposes a passive multi-characteristics user authentication framework for continuous user authentication. We first characterize user physical layer identities using a well-known eXtreme Gradient Boosting (XGBoost) machine learning algorithm, and then depict user behavioral characteristics by formulating the authentication decision process as a Hidden Markov Model (HMM) to further confirm user identities. Extensive experiments are performed to show the authentication performance of the proposed user authentication framework in terms of ROC curves and accuracy in various IIoT scenarios. We also investigate the performance of the proposed framework for resisting impersonation attacks in the IIoT scenario.","PeriodicalId":414672,"journal":{"name":"2021 International Conference on Networking and Network Applications (NaNA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Applicability of Multi-Characteristics for the Continuous Authentication in IIoT Scenarios\",\"authors\":\"Guozhu Zhao, Pinchang Zhang, Lisheng Ma\",\"doi\":\"10.1109/NaNA53684.2021.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By exploiting characteristics from channel state information (CSI) profiles and the behavioral habits of users during their routine work processes in IIoT systems, this paper proposes a passive multi-characteristics user authentication framework for continuous user authentication. We first characterize user physical layer identities using a well-known eXtreme Gradient Boosting (XGBoost) machine learning algorithm, and then depict user behavioral characteristics by formulating the authentication decision process as a Hidden Markov Model (HMM) to further confirm user identities. Extensive experiments are performed to show the authentication performance of the proposed user authentication framework in terms of ROC curves and accuracy in various IIoT scenarios. We also investigate the performance of the proposed framework for resisting impersonation attacks in the IIoT scenario.\",\"PeriodicalId\":414672,\"journal\":{\"name\":\"2021 International Conference on Networking and Network Applications (NaNA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Networking and Network Applications (NaNA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NaNA53684.2021.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Networking and Network Applications (NaNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaNA53684.2021.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过利用IIoT系统中通道状态信息(CSI)特征和用户在日常工作过程中的行为习惯,提出了一种被动多特征用户认证框架,用于用户的连续认证。我们首先使用著名的极端梯度增强(XGBoost)机器学习算法表征用户物理层身份,然后通过将认证决策过程表述为隐马尔可夫模型(HMM)来描述用户行为特征,以进一步确认用户身份。进行了大量的实验,以显示所提出的用户认证框架在各种IIoT场景下的ROC曲线和准确性方面的认证性能。我们还研究了所提出的框架在IIoT场景中抵抗模拟攻击的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Applicability of Multi-Characteristics for the Continuous Authentication in IIoT Scenarios
By exploiting characteristics from channel state information (CSI) profiles and the behavioral habits of users during their routine work processes in IIoT systems, this paper proposes a passive multi-characteristics user authentication framework for continuous user authentication. We first characterize user physical layer identities using a well-known eXtreme Gradient Boosting (XGBoost) machine learning algorithm, and then depict user behavioral characteristics by formulating the authentication decision process as a Hidden Markov Model (HMM) to further confirm user identities. Extensive experiments are performed to show the authentication performance of the proposed user authentication framework in terms of ROC curves and accuracy in various IIoT scenarios. We also investigate the performance of the proposed framework for resisting impersonation attacks in the IIoT scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信