进化策略训练的神经网络机器人控制器

A. Berlanga, P. I. Viñuela, A. Sanchis, J. M. Molina
{"title":"进化策略训练的神经网络机器人控制器","authors":"A. Berlanga, P. I. Viñuela, A. Sanchis, J. M. Molina","doi":"10.1109/CEC.1999.781954","DOIUrl":null,"url":null,"abstract":"Neural networks (NN) can be used as controllers in autonomous robots. The specific features of the navigation problem in robotics make generation of good training sets for the NN difficult. An evolution strategy (ES) is introduced to learn the weights of the NN instead of the learning method of the network. The ES is used to learn high performance reactive behavior for navigation and collision avoidance. No subjective information about \"how to accomplish the task\" has been included in the fitness function. The learned behaviors are able to solve the problem in different environments; therefore, the learning process has the proven ability to obtain a specialized behavior. All the behaviors obtained have been tested in a set of environments and the capability of generalization is shown for each learned behavior. A simulator based on the mini-robot, Khepera, has been used to learn each behavior.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Neural networks robot controller trained with evolution strategies\",\"authors\":\"A. Berlanga, P. I. Viñuela, A. Sanchis, J. M. Molina\",\"doi\":\"10.1109/CEC.1999.781954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks (NN) can be used as controllers in autonomous robots. The specific features of the navigation problem in robotics make generation of good training sets for the NN difficult. An evolution strategy (ES) is introduced to learn the weights of the NN instead of the learning method of the network. The ES is used to learn high performance reactive behavior for navigation and collision avoidance. No subjective information about \\\"how to accomplish the task\\\" has been included in the fitness function. The learned behaviors are able to solve the problem in different environments; therefore, the learning process has the proven ability to obtain a specialized behavior. All the behaviors obtained have been tested in a set of environments and the capability of generalization is shown for each learned behavior. A simulator based on the mini-robot, Khepera, has been used to learn each behavior.\",\"PeriodicalId\":292523,\"journal\":{\"name\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.1999.781954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.781954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

神经网络(NN)可以作为自主机器人的控制器。机器人导航问题的特殊性使得神经网络难以生成好的训练集。引入进化策略(ES)来学习神经网络的权值,取代网络的学习方法。ES用于学习导航和避碰的高性能反应行为。适应度函数中没有包含关于“如何完成任务”的主观信息。学习行为能够在不同的环境中解决问题;因此,在学习过程中有经过验证的能力获得一种专门的行为。所有得到的行为都在一组环境中进行了测试,并显示了每个学习行为的泛化能力。一个基于微型机器人Khepera的模拟器被用来学习每一种行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural networks robot controller trained with evolution strategies
Neural networks (NN) can be used as controllers in autonomous robots. The specific features of the navigation problem in robotics make generation of good training sets for the NN difficult. An evolution strategy (ES) is introduced to learn the weights of the NN instead of the learning method of the network. The ES is used to learn high performance reactive behavior for navigation and collision avoidance. No subjective information about "how to accomplish the task" has been included in the fitness function. The learned behaviors are able to solve the problem in different environments; therefore, the learning process has the proven ability to obtain a specialized behavior. All the behaviors obtained have been tested in a set of environments and the capability of generalization is shown for each learned behavior. A simulator based on the mini-robot, Khepera, has been used to learn each behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信