基于PCA-Kalman的电力需求负荷预测

Lucas D. X. Ribeiro, Jayme Milanezi, J. Costa, W. Giozza, R. K. Miranda, M. Vieira
{"title":"基于PCA-Kalman的电力需求负荷预测","authors":"Lucas D. X. Ribeiro, Jayme Milanezi, J. Costa, W. Giozza, R. K. Miranda, M. Vieira","doi":"10.1109/ISSPIT.2016.7886010","DOIUrl":null,"url":null,"abstract":"Electricity demand time series are stochastic processes related to climate, social and economic variables. By predicting the evolution of such time series, electrical load forecasting can be performed in order to support the electrical grid planning. In this paper, we propose a Kalman based load forecasting system for daily demand forecasting. Our proposed approach incorporates a Principal Component Analysis (PCA) of the input variables obtained from linear and nonlinear transformations of the candidate time series. In order to validate our predicting scheme, data collected from Brasília distribution company has been used. Our proposed approach outperforms state-of-the-art approaches based on state space and artificial neural networks.","PeriodicalId":371691,"journal":{"name":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"PCA-Kalman based load forecasting of electric power demand\",\"authors\":\"Lucas D. X. Ribeiro, Jayme Milanezi, J. Costa, W. Giozza, R. K. Miranda, M. Vieira\",\"doi\":\"10.1109/ISSPIT.2016.7886010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electricity demand time series are stochastic processes related to climate, social and economic variables. By predicting the evolution of such time series, electrical load forecasting can be performed in order to support the electrical grid planning. In this paper, we propose a Kalman based load forecasting system for daily demand forecasting. Our proposed approach incorporates a Principal Component Analysis (PCA) of the input variables obtained from linear and nonlinear transformations of the candidate time series. In order to validate our predicting scheme, data collected from Brasília distribution company has been used. Our proposed approach outperforms state-of-the-art approaches based on state space and artificial neural networks.\",\"PeriodicalId\":371691,\"journal\":{\"name\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2016.7886010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2016.7886010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

电力需求时间序列是与气候、社会和经济变量相关的随机过程。通过预测这些时间序列的演变,可以进行负荷预测,以支持电网规划。本文提出了一种基于卡尔曼的负荷预测系统,用于日需求预测。我们提出的方法结合了从候选时间序列的线性和非线性变换中获得的输入变量的主成分分析(PCA)。为了验证我们的预测方案,使用了Brasília分销公司收集的数据。我们提出的方法优于基于状态空间和人工神经网络的最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PCA-Kalman based load forecasting of electric power demand
Electricity demand time series are stochastic processes related to climate, social and economic variables. By predicting the evolution of such time series, electrical load forecasting can be performed in order to support the electrical grid planning. In this paper, we propose a Kalman based load forecasting system for daily demand forecasting. Our proposed approach incorporates a Principal Component Analysis (PCA) of the input variables obtained from linear and nonlinear transformations of the candidate time series. In order to validate our predicting scheme, data collected from Brasília distribution company has been used. Our proposed approach outperforms state-of-the-art approaches based on state space and artificial neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信