自动大小类型推断和复杂性分析

Martin Avanzini, Ugo Dal Lago
{"title":"自动大小类型推断和复杂性分析","authors":"Martin Avanzini, Ugo Dal Lago","doi":"10.4204/EPTCS.248.5","DOIUrl":null,"url":null,"abstract":"This paper introduces a new methodology for the complexity analysis of higher-order functional programs, which is based on three components: a powerful type system for size analysis and a sound type inference procedure for it, a ticking monadic transformation and a concrete tool for constraint solving. Noticeably, the presented methodology can be fully automated, and is able to analyse a series of examples which cannot be handled by most competitor methodologies. This is possible due to various key ingredients, and in particular an abstract index language and index polymorphism at higher ranks. A prototype implementation is available.","PeriodicalId":196864,"journal":{"name":"DICE-FOPARA@ETAPS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Sized-Type Inference and Complexity Analysis\",\"authors\":\"Martin Avanzini, Ugo Dal Lago\",\"doi\":\"10.4204/EPTCS.248.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new methodology for the complexity analysis of higher-order functional programs, which is based on three components: a powerful type system for size analysis and a sound type inference procedure for it, a ticking monadic transformation and a concrete tool for constraint solving. Noticeably, the presented methodology can be fully automated, and is able to analyse a series of examples which cannot be handled by most competitor methodologies. This is possible due to various key ingredients, and in particular an abstract index language and index polymorphism at higher ranks. A prototype implementation is available.\",\"PeriodicalId\":196864,\"journal\":{\"name\":\"DICE-FOPARA@ETAPS\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DICE-FOPARA@ETAPS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.248.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DICE-FOPARA@ETAPS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.248.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的高阶函数式程序复杂性分析方法,该方法由三部分组成:用于大小分析的强大类型系统和完善的类型推理程序、滴答一元变换和约束求解的具体工具。值得注意的是,所提出的方法可以完全自动化,并能够分析一系列的例子,不能由大多数竞争对手的方法处理。这是可能的,因为有各种关键成分,特别是抽象索引语言和更高级别的索引多态性。原型实现是可用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Sized-Type Inference and Complexity Analysis
This paper introduces a new methodology for the complexity analysis of higher-order functional programs, which is based on three components: a powerful type system for size analysis and a sound type inference procedure for it, a ticking monadic transformation and a concrete tool for constraint solving. Noticeably, the presented methodology can be fully automated, and is able to analyse a series of examples which cannot be handled by most competitor methodologies. This is possible due to various key ingredients, and in particular an abstract index language and index polymorphism at higher ranks. A prototype implementation is available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信