{"title":"Π-Shaped浮式防波堤波浪透射系数估算的解析方法","authors":"Abubaker Alamailes","doi":"10.59743/jmset.v8i1.7","DOIUrl":null,"url":null,"abstract":"This study presents a simplified analytical approach, based on power transmission theory, to estimate the transmission coefficient of a π-shaped floating breakwater (FB) with finite width. In evaluating the transmitted wave power, this approach considers both the incident wave kinetic power and the heave oscillation of the FB. Additional power due to the acceleration of the floating body and the hydrodynamic mass increases the transmitted wave power behind the FB and consequently increases the transmission coefficient. The proposed theoretical approach is validated using laboratory-scale experimental data obtained from the literature for π-shaped FB. The results of the proposed approach are in good to excellent agreement with those of experimental studies. In addition, the reliability of the proposed approach is assessed by comparing its results with those of other theoretical models. The effects of sea depth, relative draft, and incident wave height on the magnitude of the transmission coefficient are examined. It is found that the effect of the incident wave height distinguishes the proposed model from others in the existing literature.","PeriodicalId":106154,"journal":{"name":"مجلة علوم البحار والتقنيات البيئية","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Approach for Estimation of Wave Transmission Coefficient for Π-Shaped Floating Breakwater\",\"authors\":\"Abubaker Alamailes\",\"doi\":\"10.59743/jmset.v8i1.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a simplified analytical approach, based on power transmission theory, to estimate the transmission coefficient of a π-shaped floating breakwater (FB) with finite width. In evaluating the transmitted wave power, this approach considers both the incident wave kinetic power and the heave oscillation of the FB. Additional power due to the acceleration of the floating body and the hydrodynamic mass increases the transmitted wave power behind the FB and consequently increases the transmission coefficient. The proposed theoretical approach is validated using laboratory-scale experimental data obtained from the literature for π-shaped FB. The results of the proposed approach are in good to excellent agreement with those of experimental studies. In addition, the reliability of the proposed approach is assessed by comparing its results with those of other theoretical models. The effects of sea depth, relative draft, and incident wave height on the magnitude of the transmission coefficient are examined. It is found that the effect of the incident wave height distinguishes the proposed model from others in the existing literature.\",\"PeriodicalId\":106154,\"journal\":{\"name\":\"مجلة علوم البحار والتقنيات البيئية\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"مجلة علوم البحار والتقنيات البيئية\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59743/jmset.v8i1.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"مجلة علوم البحار والتقنيات البيئية","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59743/jmset.v8i1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analytical Approach for Estimation of Wave Transmission Coefficient for Π-Shaped Floating Breakwater
This study presents a simplified analytical approach, based on power transmission theory, to estimate the transmission coefficient of a π-shaped floating breakwater (FB) with finite width. In evaluating the transmitted wave power, this approach considers both the incident wave kinetic power and the heave oscillation of the FB. Additional power due to the acceleration of the floating body and the hydrodynamic mass increases the transmitted wave power behind the FB and consequently increases the transmission coefficient. The proposed theoretical approach is validated using laboratory-scale experimental data obtained from the literature for π-shaped FB. The results of the proposed approach are in good to excellent agreement with those of experimental studies. In addition, the reliability of the proposed approach is assessed by comparing its results with those of other theoretical models. The effects of sea depth, relative draft, and incident wave height on the magnitude of the transmission coefficient are examined. It is found that the effect of the incident wave height distinguishes the proposed model from others in the existing literature.