基于非线性Wiener过程的阶跃应力加速退化模型

Lin Deng, Zegui Huang, Zhongyi Cai, Yunxiang Chen
{"title":"基于非线性Wiener过程的阶跃应力加速退化模型","authors":"Lin Deng, Zegui Huang, Zhongyi Cai, Yunxiang Chen","doi":"10.1109/ICRMS.2016.8050041","DOIUrl":null,"url":null,"abstract":"Aiming at nonlinear degradation data in step-stress accelerated degradation test (SSADT), the reliability assessment method is put forward based on Wiener process. the process and degradation data model of SSADT is analyzed. The time scale model is used to convert nonlinear data into linear data. Draft coefficient of Wiener process is regarded as a random variable. Reliability model for nonlinear degradation data is built in consideration of individual variation. The two-step maximum likelihood estimation method (TSMLE) is used to derive the unknown parameters. An example is analyzed to show that presented model is correct.","PeriodicalId":347031,"journal":{"name":"2016 11th International Conference on Reliability, Maintainability and Safety (ICRMS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Step-stress accelerated degradation modeling based on nonlinear Wiener process\",\"authors\":\"Lin Deng, Zegui Huang, Zhongyi Cai, Yunxiang Chen\",\"doi\":\"10.1109/ICRMS.2016.8050041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at nonlinear degradation data in step-stress accelerated degradation test (SSADT), the reliability assessment method is put forward based on Wiener process. the process and degradation data model of SSADT is analyzed. The time scale model is used to convert nonlinear data into linear data. Draft coefficient of Wiener process is regarded as a random variable. Reliability model for nonlinear degradation data is built in consideration of individual variation. The two-step maximum likelihood estimation method (TSMLE) is used to derive the unknown parameters. An example is analyzed to show that presented model is correct.\",\"PeriodicalId\":347031,\"journal\":{\"name\":\"2016 11th International Conference on Reliability, Maintainability and Safety (ICRMS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 11th International Conference on Reliability, Maintainability and Safety (ICRMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRMS.2016.8050041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Conference on Reliability, Maintainability and Safety (ICRMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRMS.2016.8050041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对阶跃应力加速退化试验(SSADT)中的非线性退化数据,提出了基于Wiener过程的可靠性评估方法。分析了SSADT的过程和退化数据模型。采用时间尺度模型将非线性数据转化为线性数据。将维纳过程的牵伸系数作为一个随机变量。建立了考虑个体变异的非线性退化数据的可靠性模型。采用两步极大似然估计法(TSMLE)推导未知参数。算例分析表明该模型是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Step-stress accelerated degradation modeling based on nonlinear Wiener process
Aiming at nonlinear degradation data in step-stress accelerated degradation test (SSADT), the reliability assessment method is put forward based on Wiener process. the process and degradation data model of SSADT is analyzed. The time scale model is used to convert nonlinear data into linear data. Draft coefficient of Wiener process is regarded as a random variable. Reliability model for nonlinear degradation data is built in consideration of individual variation. The two-step maximum likelihood estimation method (TSMLE) is used to derive the unknown parameters. An example is analyzed to show that presented model is correct.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信