利用网络延迟可变性提高延迟关键服务的QoE

S. Shukla, M. Farrens
{"title":"利用网络延迟可变性提高延迟关键服务的QoE","authors":"S. Shukla, M. Farrens","doi":"10.1109/nas51552.2021.9605367","DOIUrl":null,"url":null,"abstract":"Even as cloud providers offer strict guarantees on the intra-cloud delay of requests for Latency-Critical (LC) Services, a high external network delay can result in a large end-to-end delay, causing a low user Quality of Experience (QoE). Furthermore, due to the variability in the external network delay, there is a disconnect between the user’s QoE and the cloud guaranteed service level objective (SLO). Specifically, a request that meets the SLO, can have a high or low QoE depending on the external network delay. In this work we propose a usercentric End-to-end Service Level Objective (ESLO), an extension of the traditional cloud-centric SLO, that guarantees stricter bounds on end-to-end delay and thereby achieving a higher QoE. We show how the variability in the external network delay can be both addressed and leveraged to meet the ESLO and improve server utilization. We propose ESLO-aware extensions to the Kubernetes infrastructure, that uses information about the external network delay and its distribution - (a) to reduce the number of QoE-violating responses by using deadline-based scheduling at the service instances, and (b) to appropriately scale service instances with load. We implement the ESLO-aware framework on the NSF Chameleon cloud testbed and present experimental results demonstrating the benefit of the proposed paradigm.","PeriodicalId":135930,"journal":{"name":"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Leveraging Network Delay Variability to Improve QoE of Latency Critical Services\",\"authors\":\"S. Shukla, M. Farrens\",\"doi\":\"10.1109/nas51552.2021.9605367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even as cloud providers offer strict guarantees on the intra-cloud delay of requests for Latency-Critical (LC) Services, a high external network delay can result in a large end-to-end delay, causing a low user Quality of Experience (QoE). Furthermore, due to the variability in the external network delay, there is a disconnect between the user’s QoE and the cloud guaranteed service level objective (SLO). Specifically, a request that meets the SLO, can have a high or low QoE depending on the external network delay. In this work we propose a usercentric End-to-end Service Level Objective (ESLO), an extension of the traditional cloud-centric SLO, that guarantees stricter bounds on end-to-end delay and thereby achieving a higher QoE. We show how the variability in the external network delay can be both addressed and leveraged to meet the ESLO and improve server utilization. We propose ESLO-aware extensions to the Kubernetes infrastructure, that uses information about the external network delay and its distribution - (a) to reduce the number of QoE-violating responses by using deadline-based scheduling at the service instances, and (b) to appropriately scale service instances with load. We implement the ESLO-aware framework on the NSF Chameleon cloud testbed and present experimental results demonstrating the benefit of the proposed paradigm.\",\"PeriodicalId\":135930,\"journal\":{\"name\":\"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/nas51552.2021.9605367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/nas51552.2021.9605367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

即使云提供商对延迟关键型(LC)服务请求的云内延迟提供严格保证,高外部网络延迟也可能导致大的端到端延迟,从而导致低用户体验质量(QoE)。此外,由于外部网络延迟的可变性,用户的QoE和云保证的服务水平目标(SLO)之间存在脱节。具体来说,满足SLO的请求可以具有高或低的QoE,这取决于外部网络延迟。在这项工作中,我们提出了一个以用户为中心的端到端服务水平目标(ESLO),这是传统的以云为中心的SLO的扩展,它保证了端到端延迟的更严格限制,从而实现了更高的QoE。我们将展示如何解决和利用外部网络延迟中的可变性,以满足ESLO并提高服务器利用率。我们建议对Kubernetes基础设施进行eslo感知扩展,该扩展使用有关外部网络延迟及其分布的信息- (a)通过在服务实例上使用基于截止日期的调度来减少违反qos的响应的数量,以及(b)根据负载适当地扩展服务实例。我们在NSF变色龙云测试平台上实现了eslo感知框架,并给出了实验结果,证明了所提出范式的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Network Delay Variability to Improve QoE of Latency Critical Services
Even as cloud providers offer strict guarantees on the intra-cloud delay of requests for Latency-Critical (LC) Services, a high external network delay can result in a large end-to-end delay, causing a low user Quality of Experience (QoE). Furthermore, due to the variability in the external network delay, there is a disconnect between the user’s QoE and the cloud guaranteed service level objective (SLO). Specifically, a request that meets the SLO, can have a high or low QoE depending on the external network delay. In this work we propose a usercentric End-to-end Service Level Objective (ESLO), an extension of the traditional cloud-centric SLO, that guarantees stricter bounds on end-to-end delay and thereby achieving a higher QoE. We show how the variability in the external network delay can be both addressed and leveraged to meet the ESLO and improve server utilization. We propose ESLO-aware extensions to the Kubernetes infrastructure, that uses information about the external network delay and its distribution - (a) to reduce the number of QoE-violating responses by using deadline-based scheduling at the service instances, and (b) to appropriately scale service instances with load. We implement the ESLO-aware framework on the NSF Chameleon cloud testbed and present experimental results demonstrating the benefit of the proposed paradigm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信