手指分割及其逼近

Pavel Jetenský, J. Marek, J. Rak
{"title":"手指分割及其逼近","authors":"Pavel Jetenský, J. Marek, J. Rak","doi":"10.1109/RADIOELEK.2015.7129026","DOIUrl":null,"url":null,"abstract":"Aim of the paper is to find an algorithm for detecting finger's knuckle in the binary image with high precision and accuracy. At our disposal are measured coordinates of points on the finger, which are obtained from Microsoft Kinect. We form a suitable model for finger's characterization. It is based on the transformation of coordinates and regression models. A regression model gives a non-smooth function with change point. The main goal is to find the change point of the approximation function corresponding to the knuckle.","PeriodicalId":193275,"journal":{"name":"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fingers segmentation and its approximation\",\"authors\":\"Pavel Jetenský, J. Marek, J. Rak\",\"doi\":\"10.1109/RADIOELEK.2015.7129026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim of the paper is to find an algorithm for detecting finger's knuckle in the binary image with high precision and accuracy. At our disposal are measured coordinates of points on the finger, which are obtained from Microsoft Kinect. We form a suitable model for finger's characterization. It is based on the transformation of coordinates and regression models. A regression model gives a non-smooth function with change point. The main goal is to find the change point of the approximation function corresponding to the knuckle.\",\"PeriodicalId\":193275,\"journal\":{\"name\":\"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADIOELEK.2015.7129026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2015.7129026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文的目的是寻找一种在二值图像中高精度检测手指关节的算法。我们可以使用从微软Kinect获得的手指上点的测量坐标。我们形成了一个适合手指表征的模型。它是基于坐标变换和回归模型。回归模型给出了一个具有变化点的非光滑函数。主要目标是找到与关节相对应的近似函数的变化点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fingers segmentation and its approximation
Aim of the paper is to find an algorithm for detecting finger's knuckle in the binary image with high precision and accuracy. At our disposal are measured coordinates of points on the finger, which are obtained from Microsoft Kinect. We form a suitable model for finger's characterization. It is based on the transformation of coordinates and regression models. A regression model gives a non-smooth function with change point. The main goal is to find the change point of the approximation function corresponding to the knuckle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信