图聚类线性代数例程的浮点舍入误差分析

L. Yang, Alyson Fox
{"title":"图聚类线性代数例程的浮点舍入误差分析","authors":"L. Yang, Alyson Fox","doi":"10.1109/HPEC43674.2020.9286190","DOIUrl":null,"url":null,"abstract":"We explore the various ways rounding errors can impact the power method for calculating the Fielder vector for graph clustering. A rounding error analysis reveals that the best eigenpair that is computable with a certain floating point precision type has a worst-case error that scales to its unit round-off. Although rounding errors can accumulate in the power method at the worst-case bound, this behavior is not reflected in some practical examples. Furthermore, our numerical experiments show that rounding errors from the power method may satisfy the conditions necessary for the bounding of the mis-clustering rate and that the approximate eigenvectors with errors close to half precision unit round-off can yield sufficient clustering results for partitioning stochastic block model graphs.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of floating-point round-off error in linear algebra routines for graph clustering\",\"authors\":\"L. Yang, Alyson Fox\",\"doi\":\"10.1109/HPEC43674.2020.9286190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the various ways rounding errors can impact the power method for calculating the Fielder vector for graph clustering. A rounding error analysis reveals that the best eigenpair that is computable with a certain floating point precision type has a worst-case error that scales to its unit round-off. Although rounding errors can accumulate in the power method at the worst-case bound, this behavior is not reflected in some practical examples. Furthermore, our numerical experiments show that rounding errors from the power method may satisfy the conditions necessary for the bounding of the mis-clustering rate and that the approximate eigenvectors with errors close to half precision unit round-off can yield sufficient clustering results for partitioning stochastic block model graphs.\",\"PeriodicalId\":168544,\"journal\":{\"name\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC43674.2020.9286190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们探讨了舍入误差对计算图聚类的Fielder向量的幂方法的影响。舍入误差分析表明,具有特定浮点精度类型可计算的最佳特征对具有缩放到其单位舍入的最坏情况误差。虽然在幂方法中,舍入误差会在最坏情况下累积,但在一些实际示例中不会反映出这种行为。此外,我们的数值实验表明,幂方法的舍入误差可以满足错误聚类率边界的必要条件,并且近似特征向量的误差接近半精度单位舍入可以产生足够的聚类结果来划分随机块模型图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of floating-point round-off error in linear algebra routines for graph clustering
We explore the various ways rounding errors can impact the power method for calculating the Fielder vector for graph clustering. A rounding error analysis reveals that the best eigenpair that is computable with a certain floating point precision type has a worst-case error that scales to its unit round-off. Although rounding errors can accumulate in the power method at the worst-case bound, this behavior is not reflected in some practical examples. Furthermore, our numerical experiments show that rounding errors from the power method may satisfy the conditions necessary for the bounding of the mis-clustering rate and that the approximate eigenvectors with errors close to half precision unit round-off can yield sufficient clustering results for partitioning stochastic block model graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信