具有环面作用的复流形的Dolbeault上同调

Roman Krutowski, T. Panov
{"title":"具有环面作用的复流形的Dolbeault上同调","authors":"Roman Krutowski, T. Panov","doi":"10.1090/conm/772/15489","DOIUrl":null,"url":null,"abstract":"We describe the basic Dolbeault cohomology algebra of the canonical foliation on a class of complex manifolds with a torus symmetry group. This class includes complex moment-angle manifolds, LVM- and LVMB-manifolds and, in most generality, complex manifolds with a maximal holomorphic torus action. We also provide a DGA model for the ordinary Dolbeault cohomology algebra. The Hodge decomposition for the basic Dolbeault cohomology is proved by reducing to the transversely Kähler (equivalently, polytopal) case using a foliated analogue of toric blow-up.","PeriodicalId":296603,"journal":{"name":"Topology, Geometry, and Dynamics","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dolbeault cohomology of complex manifolds with torus action\",\"authors\":\"Roman Krutowski, T. Panov\",\"doi\":\"10.1090/conm/772/15489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the basic Dolbeault cohomology algebra of the canonical foliation on a class of complex manifolds with a torus symmetry group. This class includes complex moment-angle manifolds, LVM- and LVMB-manifolds and, in most generality, complex manifolds with a maximal holomorphic torus action. We also provide a DGA model for the ordinary Dolbeault cohomology algebra. The Hodge decomposition for the basic Dolbeault cohomology is proved by reducing to the transversely Kähler (equivalently, polytopal) case using a foliated analogue of toric blow-up.\",\"PeriodicalId\":296603,\"journal\":{\"name\":\"Topology, Geometry, and Dynamics\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology, Geometry, and Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/772/15489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology, Geometry, and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/772/15489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

描述了一类具有环面对称群的复流形上规范叶的基本Dolbeault上同调代数。该类包括复矩角流形、LVM-流形和lvmb -流形,以及具有极大全纯环面作用的复流形。我们还给出了普通Dolbeault上同代数的DGA模型。基本Dolbeault上同的Hodge分解是通过使用环面膨胀的叶状模拟来简化到横向Kähler(等效地,多向)情况来证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dolbeault cohomology of complex manifolds with torus action
We describe the basic Dolbeault cohomology algebra of the canonical foliation on a class of complex manifolds with a torus symmetry group. This class includes complex moment-angle manifolds, LVM- and LVMB-manifolds and, in most generality, complex manifolds with a maximal holomorphic torus action. We also provide a DGA model for the ordinary Dolbeault cohomology algebra. The Hodge decomposition for the basic Dolbeault cohomology is proved by reducing to the transversely Kähler (equivalently, polytopal) case using a foliated analogue of toric blow-up.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信