{"title":"Hilbert方案,Donaldson-Thomas理论,vfa - witten理论和Seiberg-Witten理论","authors":"A. Sheshmani","doi":"10.4310/ICCM.2019.V7.N2.A3","DOIUrl":null,"url":null,"abstract":"This article provides a summary of arXiv:1701.08899 and arXiv:1701.08902 where the authors studied the enumerative geometry of nested Hilbert schemes of points and curves on algebraic surfaces and their connections to threefold theories, and in particular relevant Donaldson-Thomas, Vafa-Witten and Seiberg-Witten theories.","PeriodicalId":415664,"journal":{"name":"Notices of the International Congress of Chinese Mathematicians","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hilbert schemes, Donaldson–Thomas theory, Vafa–Witten and Seiberg–Witten theory\",\"authors\":\"A. Sheshmani\",\"doi\":\"10.4310/ICCM.2019.V7.N2.A3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article provides a summary of arXiv:1701.08899 and arXiv:1701.08902 where the authors studied the enumerative geometry of nested Hilbert schemes of points and curves on algebraic surfaces and their connections to threefold theories, and in particular relevant Donaldson-Thomas, Vafa-Witten and Seiberg-Witten theories.\",\"PeriodicalId\":415664,\"journal\":{\"name\":\"Notices of the International Congress of Chinese Mathematicians\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notices of the International Congress of Chinese Mathematicians\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/ICCM.2019.V7.N2.A3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notices of the International Congress of Chinese Mathematicians","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/ICCM.2019.V7.N2.A3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hilbert schemes, Donaldson–Thomas theory, Vafa–Witten and Seiberg–Witten theory
This article provides a summary of arXiv:1701.08899 and arXiv:1701.08902 where the authors studied the enumerative geometry of nested Hilbert schemes of points and curves on algebraic surfaces and their connections to threefold theories, and in particular relevant Donaldson-Thomas, Vafa-Witten and Seiberg-Witten theories.