Hilbert方案,Donaldson-Thomas理论,vfa - witten理论和Seiberg-Witten理论

A. Sheshmani
{"title":"Hilbert方案,Donaldson-Thomas理论,vfa - witten理论和Seiberg-Witten理论","authors":"A. Sheshmani","doi":"10.4310/ICCM.2019.V7.N2.A3","DOIUrl":null,"url":null,"abstract":"This article provides a summary of arXiv:1701.08899 and arXiv:1701.08902 where the authors studied the enumerative geometry of nested Hilbert schemes of points and curves on algebraic surfaces and their connections to threefold theories, and in particular relevant Donaldson-Thomas, Vafa-Witten and Seiberg-Witten theories.","PeriodicalId":415664,"journal":{"name":"Notices of the International Congress of Chinese Mathematicians","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hilbert schemes, Donaldson–Thomas theory, Vafa–Witten and Seiberg–Witten theory\",\"authors\":\"A. Sheshmani\",\"doi\":\"10.4310/ICCM.2019.V7.N2.A3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article provides a summary of arXiv:1701.08899 and arXiv:1701.08902 where the authors studied the enumerative geometry of nested Hilbert schemes of points and curves on algebraic surfaces and their connections to threefold theories, and in particular relevant Donaldson-Thomas, Vafa-Witten and Seiberg-Witten theories.\",\"PeriodicalId\":415664,\"journal\":{\"name\":\"Notices of the International Congress of Chinese Mathematicians\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notices of the International Congress of Chinese Mathematicians\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/ICCM.2019.V7.N2.A3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notices of the International Congress of Chinese Mathematicians","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/ICCM.2019.V7.N2.A3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文总结了arXiv:1701.08899和arXiv:1701.08902,作者研究了代数曲面上点和曲线的嵌套Hilbert格式的枚举几何及其与三重理论的联系,特别是相关的Donaldson-Thomas, vfa - witten和Seiberg-Witten理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hilbert schemes, Donaldson–Thomas theory, Vafa–Witten and Seiberg–Witten theory
This article provides a summary of arXiv:1701.08899 and arXiv:1701.08902 where the authors studied the enumerative geometry of nested Hilbert schemes of points and curves on algebraic surfaces and their connections to threefold theories, and in particular relevant Donaldson-Thomas, Vafa-Witten and Seiberg-Witten theories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信