监督与非监督分类方法的比较研究:在MRI脑胶质瘤自动分割中的应用

Aymen Bougacha, J. Boughariou, M. Slima, A. Hamida, K. Mahfoudh, O. Kammoun, C. Mhiri
{"title":"监督与非监督分类方法的比较研究:在MRI脑胶质瘤自动分割中的应用","authors":"Aymen Bougacha, J. Boughariou, M. Slima, A. Hamida, K. Mahfoudh, O. Kammoun, C. Mhiri","doi":"10.1109/ATSIP.2018.8364463","DOIUrl":null,"url":null,"abstract":"MRI is a noninvasive neuro-imaging modality largely used in neurology explorations and provides more objective and valuable diagnostic information for High-grade gliomas (HGG). In this context, HGG Segmentation is challenging due to their heterogeneous nature. The present research investigates a comparative study of supervised and unsupervised classification methods for MRI glioma segmentation. These methods are tested with data sets defined in BRATS 2015. We noted that artificial neural networks (ANN) provide efficient segmentation results based on DICE and Jaccard evaluation metrics.","PeriodicalId":332253,"journal":{"name":"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comparative study of supervised and unsupervised classification methods: Application to automatic MRI glioma brain tumors segmentation\",\"authors\":\"Aymen Bougacha, J. Boughariou, M. Slima, A. Hamida, K. Mahfoudh, O. Kammoun, C. Mhiri\",\"doi\":\"10.1109/ATSIP.2018.8364463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MRI is a noninvasive neuro-imaging modality largely used in neurology explorations and provides more objective and valuable diagnostic information for High-grade gliomas (HGG). In this context, HGG Segmentation is challenging due to their heterogeneous nature. The present research investigates a comparative study of supervised and unsupervised classification methods for MRI glioma segmentation. These methods are tested with data sets defined in BRATS 2015. We noted that artificial neural networks (ANN) provide efficient segmentation results based on DICE and Jaccard evaluation metrics.\",\"PeriodicalId\":332253,\"journal\":{\"name\":\"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2018.8364463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2018.8364463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

MRI是一种无创的神经影像学手段,广泛应用于神经内科的影像学检查,为高级别胶质瘤(High-grade gliomas, HGG)的诊断提供了更为客观和有价值的信息。在这种情况下,由于其异质性,HGG分割是具有挑战性的。本研究对MRI神经胶质瘤分割的监督和非监督分类方法进行了比较研究。这些方法用BRATS 2015中定义的数据集进行了测试。我们注意到人工神经网络(ANN)提供了基于DICE和Jaccard评价指标的高效分割结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative study of supervised and unsupervised classification methods: Application to automatic MRI glioma brain tumors segmentation
MRI is a noninvasive neuro-imaging modality largely used in neurology explorations and provides more objective and valuable diagnostic information for High-grade gliomas (HGG). In this context, HGG Segmentation is challenging due to their heterogeneous nature. The present research investigates a comparative study of supervised and unsupervised classification methods for MRI glioma segmentation. These methods are tested with data sets defined in BRATS 2015. We noted that artificial neural networks (ANN) provide efficient segmentation results based on DICE and Jaccard evaluation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信