三维近距离接触:使用来自Alberta Duvernay页岩地层的诊断性裂缝注入测试DFITs来量化水平和垂直平面水力裂缝的同时生长

A. K. Nicholson, R. Hawkes, R. Bachman
{"title":"三维近距离接触:使用来自Alberta Duvernay页岩地层的诊断性裂缝注入测试DFITs来量化水平和垂直平面水力裂缝的同时生长","authors":"A. K. Nicholson, R. Hawkes, R. Bachman","doi":"10.2118/194316-MS","DOIUrl":null,"url":null,"abstract":"This paper will benefit engineers and geoscientists interested in creating representative hydraulic fracture simulation models and optimizing commercial-scale fracture treatments. The paper focuses on the emerging Duvernay shale formation in Alberta, Canada. Well fracturing pressures are often significantly higher than the Overburden (OB, lithostatic) pressure. Pressures above OB likely create horizontal (hz) bedding plane fracture components since sedimentary rocks are almost always weaker along bedding planes. Most fracture design simulators do not account for the simultaneous existence of multi-plane fractures (Figure 1). Therefore, scaled treatment designs for optimizing fluids, proppant schedules and production performance may be flawed. A key question is: What proportion of the overall fracture volume do horizontal-plane features take? The answer can be sought using the Pressure Transient Analysis (PTA) workflow for Diagnostic Fracture Injection Tests (DFITs) described by Bachman et al (2012, 2015) combined with simple PKN and GDK fracture models to represent the hz and vertical plane fracture components.\n DFIT analysis techniques and interpretation are hotly debated topics of late. The authors believe a portion of the gap in the understanding of how hydraulic fractures behave is a result of assuming fracture components are fully, or dominantly, vertical. Analysts often interpret high fracturing pressures as tortuosity or near-well friction. However, during the fall-off period after pumping a DFIT, pressures above OB can persist for up to 20 minutes after pump shut-down. Analysis of these tests often exhibit early-time radial flow signatures which are coincident with the OB gradient of ~22kPa/m (1psi/ft) also indicative of hz plane fractures. In Nicholson et al 2017 four field DFIT examples were presented showing strong evidence of hz plane fractures in various depths and formations found in the Western Canadian Sedimentary Basin.\n In the current paper DFIT PTA analysis is applied to two West Shale Basin Duvernay datasets. A physical model is presented (Figure 1) that incorporates the in-situ stress regime, rock fabric, and pore pressure and that allows history matching of DFIT leak-off and closure behavior for fractures above OB pressure. Simple calculations are provided to estimate the volume and dimensions of these same components for a small volume, single viscosity, no-proppant injection DFIT. This unique approach provides a valuable calibration point for building more advanced simulation models.","PeriodicalId":103693,"journal":{"name":"Day 2 Wed, February 06, 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Close Encounters in the 3rd Dimension: Using Diagnostic Fracture Injection Tests DFITs from the Alberta Duvernay Shale Formation to Quantify Simultaneous Horizontal- & Vertical-Plane Hydraulic Fracture Growth\",\"authors\":\"A. K. Nicholson, R. Hawkes, R. Bachman\",\"doi\":\"10.2118/194316-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper will benefit engineers and geoscientists interested in creating representative hydraulic fracture simulation models and optimizing commercial-scale fracture treatments. The paper focuses on the emerging Duvernay shale formation in Alberta, Canada. Well fracturing pressures are often significantly higher than the Overburden (OB, lithostatic) pressure. Pressures above OB likely create horizontal (hz) bedding plane fracture components since sedimentary rocks are almost always weaker along bedding planes. Most fracture design simulators do not account for the simultaneous existence of multi-plane fractures (Figure 1). Therefore, scaled treatment designs for optimizing fluids, proppant schedules and production performance may be flawed. A key question is: What proportion of the overall fracture volume do horizontal-plane features take? The answer can be sought using the Pressure Transient Analysis (PTA) workflow for Diagnostic Fracture Injection Tests (DFITs) described by Bachman et al (2012, 2015) combined with simple PKN and GDK fracture models to represent the hz and vertical plane fracture components.\\n DFIT analysis techniques and interpretation are hotly debated topics of late. The authors believe a portion of the gap in the understanding of how hydraulic fractures behave is a result of assuming fracture components are fully, or dominantly, vertical. Analysts often interpret high fracturing pressures as tortuosity or near-well friction. However, during the fall-off period after pumping a DFIT, pressures above OB can persist for up to 20 minutes after pump shut-down. Analysis of these tests often exhibit early-time radial flow signatures which are coincident with the OB gradient of ~22kPa/m (1psi/ft) also indicative of hz plane fractures. In Nicholson et al 2017 four field DFIT examples were presented showing strong evidence of hz plane fractures in various depths and formations found in the Western Canadian Sedimentary Basin.\\n In the current paper DFIT PTA analysis is applied to two West Shale Basin Duvernay datasets. A physical model is presented (Figure 1) that incorporates the in-situ stress regime, rock fabric, and pore pressure and that allows history matching of DFIT leak-off and closure behavior for fractures above OB pressure. Simple calculations are provided to estimate the volume and dimensions of these same components for a small volume, single viscosity, no-proppant injection DFIT. This unique approach provides a valuable calibration point for building more advanced simulation models.\",\"PeriodicalId\":103693,\"journal\":{\"name\":\"Day 2 Wed, February 06, 2019\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, February 06, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/194316-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, February 06, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194316-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文将有助于工程师和地球科学家创建具有代表性的水力压裂模拟模型和优化商业规模的压裂处理。本文重点研究了加拿大阿尔伯塔省新兴的Duvernay页岩地层。井的压裂压力通常显著高于上覆岩层压力。高于OB的压力可能会产生水平(hz)层理面裂缝成分,因为沉积岩沿着层理面几乎总是较弱。大多数裂缝设计模拟器都没有考虑到多平面裂缝的同时存在(图1)。因此,用于优化流体、支撑剂配比和生产性能的规模化处理设计可能存在缺陷。一个关键问题是:水平面特征在整个裂缝体积中所占的比例是多少?答案可以通过Bachman等人(2012、2015)描述的压力瞬态分析(PTA)诊断裂缝注入测试(DFITs)工作流程,结合简单的PKN和GDK裂缝模型来表示hz和垂直面裂缝分量。DFIT分析技术和解释是最近热议的话题。作者认为,对水力裂缝行为的理解存在部分差距,是因为假设裂缝成分完全或主要是垂直的。分析师通常将高压裂压力解释为弯曲或近井摩擦。然而,在泵入DFIT后的下降期间,泵关闭后,高于OB的压力可能持续20分钟。这些试验分析通常显示出早期径向流动特征,这些特征与OB梯度~22kPa/m (1psi/ft)一致,也表明存在hz平面裂缝。Nicholson等人在2017年提出了四个现场DFIT实例,有力地证明了在加拿大西部沉积盆地的不同深度和地层中存在hz平面裂缝。本文将DFIT PTA分析应用于两个西部页岩盆地Duvernay数据集。给出了一个物理模型(图1),该模型结合了地应力状态、岩石结构和孔隙压力,并允许对OB压力以上裂缝的DFIT泄漏和闭合行为进行历史匹配。对于小体积、单一粘度、无支撑剂注入的DFIT,提供了简单的计算来估计这些相同组件的体积和尺寸。这种独特的方法为构建更先进的仿真模型提供了有价值的校准点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Close Encounters in the 3rd Dimension: Using Diagnostic Fracture Injection Tests DFITs from the Alberta Duvernay Shale Formation to Quantify Simultaneous Horizontal- & Vertical-Plane Hydraulic Fracture Growth
This paper will benefit engineers and geoscientists interested in creating representative hydraulic fracture simulation models and optimizing commercial-scale fracture treatments. The paper focuses on the emerging Duvernay shale formation in Alberta, Canada. Well fracturing pressures are often significantly higher than the Overburden (OB, lithostatic) pressure. Pressures above OB likely create horizontal (hz) bedding plane fracture components since sedimentary rocks are almost always weaker along bedding planes. Most fracture design simulators do not account for the simultaneous existence of multi-plane fractures (Figure 1). Therefore, scaled treatment designs for optimizing fluids, proppant schedules and production performance may be flawed. A key question is: What proportion of the overall fracture volume do horizontal-plane features take? The answer can be sought using the Pressure Transient Analysis (PTA) workflow for Diagnostic Fracture Injection Tests (DFITs) described by Bachman et al (2012, 2015) combined with simple PKN and GDK fracture models to represent the hz and vertical plane fracture components. DFIT analysis techniques and interpretation are hotly debated topics of late. The authors believe a portion of the gap in the understanding of how hydraulic fractures behave is a result of assuming fracture components are fully, or dominantly, vertical. Analysts often interpret high fracturing pressures as tortuosity or near-well friction. However, during the fall-off period after pumping a DFIT, pressures above OB can persist for up to 20 minutes after pump shut-down. Analysis of these tests often exhibit early-time radial flow signatures which are coincident with the OB gradient of ~22kPa/m (1psi/ft) also indicative of hz plane fractures. In Nicholson et al 2017 four field DFIT examples were presented showing strong evidence of hz plane fractures in various depths and formations found in the Western Canadian Sedimentary Basin. In the current paper DFIT PTA analysis is applied to two West Shale Basin Duvernay datasets. A physical model is presented (Figure 1) that incorporates the in-situ stress regime, rock fabric, and pore pressure and that allows history matching of DFIT leak-off and closure behavior for fractures above OB pressure. Simple calculations are provided to estimate the volume and dimensions of these same components for a small volume, single viscosity, no-proppant injection DFIT. This unique approach provides a valuable calibration point for building more advanced simulation models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信