{"title":"近场无线电力传输中耦合系数和质量因子选择的自由度——以DGS结构为例","authors":"R. Pokharel, A. Barakat, F. Tahar, Sherif Hekal","doi":"10.1109/IMARC.2017.8449719","DOIUrl":null,"url":null,"abstract":"This paper discusses the probability of improving the degree of freedom in implementing wireless power transfer (WPT) systems. This is possible by utilizing the defected ground structures (DGSs). The WPT efficiency can be increased by optimizing the coupling coefficient (K) between the transmitter and the receiver, and the quality ({Q-) factor of them. DGSs can be implemented in different shapes; hence, the K and Q-factor of these DSGs are realized with different values depending on the DGS shape. In return, the achievable WPT efficiency can be maximized by careful selection of the DGS shape and dimensions depending on the system efficiency and distance requirements.","PeriodicalId":259227,"journal":{"name":"2017 IEEE MTT-S International Microwave and RF Conference (IMaRC)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degree of Freedom to Select Coupling Coefficent and Quality Factor in Near-Field Wireless Power Transfer: A Case Study of Using DGS Structures\",\"authors\":\"R. Pokharel, A. Barakat, F. Tahar, Sherif Hekal\",\"doi\":\"10.1109/IMARC.2017.8449719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the probability of improving the degree of freedom in implementing wireless power transfer (WPT) systems. This is possible by utilizing the defected ground structures (DGSs). The WPT efficiency can be increased by optimizing the coupling coefficient (K) between the transmitter and the receiver, and the quality ({Q-) factor of them. DGSs can be implemented in different shapes; hence, the K and Q-factor of these DSGs are realized with different values depending on the DGS shape. In return, the achievable WPT efficiency can be maximized by careful selection of the DGS shape and dimensions depending on the system efficiency and distance requirements.\",\"PeriodicalId\":259227,\"journal\":{\"name\":\"2017 IEEE MTT-S International Microwave and RF Conference (IMaRC)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE MTT-S International Microwave and RF Conference (IMaRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMARC.2017.8449719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE MTT-S International Microwave and RF Conference (IMaRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMARC.2017.8449719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Degree of Freedom to Select Coupling Coefficent and Quality Factor in Near-Field Wireless Power Transfer: A Case Study of Using DGS Structures
This paper discusses the probability of improving the degree of freedom in implementing wireless power transfer (WPT) systems. This is possible by utilizing the defected ground structures (DGSs). The WPT efficiency can be increased by optimizing the coupling coefficient (K) between the transmitter and the receiver, and the quality ({Q-) factor of them. DGSs can be implemented in different shapes; hence, the K and Q-factor of these DSGs are realized with different values depending on the DGS shape. In return, the achievable WPT efficiency can be maximized by careful selection of the DGS shape and dimensions depending on the system efficiency and distance requirements.