FlexAdapt:灵活的周期-一致的对抗领域适应

Akhil Mathur, Anton Isopoussu, F. Kawsar, N. Bianchi-Berthouze, N. Lane
{"title":"FlexAdapt:灵活的周期-一致的对抗领域适应","authors":"Akhil Mathur, Anton Isopoussu, F. Kawsar, N. Bianchi-Berthouze, N. Lane","doi":"10.1109/ICMLA.2019.00155","DOIUrl":null,"url":null,"abstract":"Unsupervised domain adaptation is emerging as a powerful technique to improve the generalizability of deep learning models to new image domains without using any labeled data in the target domain. In the literature, solutions which perform cross-domain feature-matching (e.g., ADDA), pixel-matching (CycleGAN), and combination of the two (e.g., CyCADA) have been proposed for unsupervised domain adaptation. Many of these approaches make a strong assumption that the source and target label spaces are the same, however in the real-world, this assumption does not hold true. In this paper, we propose a novel solution, FlexAdapt, which extends the state-of-the-art unsupervised domain adaptation approach of CyCADA to scenarios where the label spaces in source and target domains are only partially overlapped. Our solution beats a number of state-of-the-art baseline approaches by as much as 29% in some scenarios, and represent a way forward for applying domain adaptation techniques in the real world.","PeriodicalId":436714,"journal":{"name":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"FlexAdapt: Flexible Cycle-Consistent Adversarial Domain Adaptation\",\"authors\":\"Akhil Mathur, Anton Isopoussu, F. Kawsar, N. Bianchi-Berthouze, N. Lane\",\"doi\":\"10.1109/ICMLA.2019.00155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised domain adaptation is emerging as a powerful technique to improve the generalizability of deep learning models to new image domains without using any labeled data in the target domain. In the literature, solutions which perform cross-domain feature-matching (e.g., ADDA), pixel-matching (CycleGAN), and combination of the two (e.g., CyCADA) have been proposed for unsupervised domain adaptation. Many of these approaches make a strong assumption that the source and target label spaces are the same, however in the real-world, this assumption does not hold true. In this paper, we propose a novel solution, FlexAdapt, which extends the state-of-the-art unsupervised domain adaptation approach of CyCADA to scenarios where the label spaces in source and target domains are only partially overlapped. Our solution beats a number of state-of-the-art baseline approaches by as much as 29% in some scenarios, and represent a way forward for applying domain adaptation techniques in the real world.\",\"PeriodicalId\":436714,\"journal\":{\"name\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2019.00155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2019.00155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

无监督域自适应是一种强大的技术,它可以在不使用目标域中任何标记数据的情况下提高深度学习模型对新图像域的泛化能力。在文献中,已经提出了跨域特征匹配(例如ADDA),像素匹配(CycleGAN)以及两者结合(例如CyCADA)的解决方案,用于无监督域自适应。这些方法中的许多都假定源标签空间和目标标签空间是相同的,但是在现实世界中,这个假定并不成立。在本文中,我们提出了一种新颖的解决方案FlexAdapt,它将CyCADA最先进的无监督域自适应方法扩展到源域和目标域的标签空间仅部分重叠的场景。在某些情况下,我们的解决方案比许多最先进的基线方法高出29%,并且代表了在现实世界中应用领域自适应技术的前进方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FlexAdapt: Flexible Cycle-Consistent Adversarial Domain Adaptation
Unsupervised domain adaptation is emerging as a powerful technique to improve the generalizability of deep learning models to new image domains without using any labeled data in the target domain. In the literature, solutions which perform cross-domain feature-matching (e.g., ADDA), pixel-matching (CycleGAN), and combination of the two (e.g., CyCADA) have been proposed for unsupervised domain adaptation. Many of these approaches make a strong assumption that the source and target label spaces are the same, however in the real-world, this assumption does not hold true. In this paper, we propose a novel solution, FlexAdapt, which extends the state-of-the-art unsupervised domain adaptation approach of CyCADA to scenarios where the label spaces in source and target domains are only partially overlapped. Our solution beats a number of state-of-the-art baseline approaches by as much as 29% in some scenarios, and represent a way forward for applying domain adaptation techniques in the real world.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信