{"title":"苹果硅在科学计算中的性能","authors":"Connor Kenyon, Collin Capano","doi":"10.1109/HPEC55821.2022.9926315","DOIUrl":null,"url":null,"abstract":"With the release of the Apple Silicon System-on-a-Chip processors, and the impressive performance shown in general use by both the M1 and M1 Ultra, the potential use for Apple Silicon processors in scientific computing is explored. Both the M1 and M1 Ultra are compared to current state-of-the-art data-center GPUs, including an NVIDIA V100 with PCIe, an NVIDIA V100 with NVLink, and an NVIDIA A100 with PCIe. The scientific performance is measured using the Scalable Heterogeneous Computing (SHOC) benchmark suite using OpenCL benchmarks. We find that both M1 processors out perform the GPUs in all benchmarks.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Apple Silicon Performance in Scientific Computing\",\"authors\":\"Connor Kenyon, Collin Capano\",\"doi\":\"10.1109/HPEC55821.2022.9926315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the release of the Apple Silicon System-on-a-Chip processors, and the impressive performance shown in general use by both the M1 and M1 Ultra, the potential use for Apple Silicon processors in scientific computing is explored. Both the M1 and M1 Ultra are compared to current state-of-the-art data-center GPUs, including an NVIDIA V100 with PCIe, an NVIDIA V100 with NVLink, and an NVIDIA A100 with PCIe. The scientific performance is measured using the Scalable Heterogeneous Computing (SHOC) benchmark suite using OpenCL benchmarks. We find that both M1 processors out perform the GPUs in all benchmarks.\",\"PeriodicalId\":200071,\"journal\":{\"name\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC55821.2022.9926315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
With the release of the Apple Silicon System-on-a-Chip processors, and the impressive performance shown in general use by both the M1 and M1 Ultra, the potential use for Apple Silicon processors in scientific computing is explored. Both the M1 and M1 Ultra are compared to current state-of-the-art data-center GPUs, including an NVIDIA V100 with PCIe, an NVIDIA V100 with NVLink, and an NVIDIA A100 with PCIe. The scientific performance is measured using the Scalable Heterogeneous Computing (SHOC) benchmark suite using OpenCL benchmarks. We find that both M1 processors out perform the GPUs in all benchmarks.