Null-homologous平整

C. Livingston
{"title":"Null-homologous平整","authors":"C. Livingston","doi":"10.4171/irma/33-1/3","DOIUrl":null,"url":null,"abstract":"Every knot can be unknotted with two generalized twists; this was first proved by Ohyama. Here we prove that any knot of genus g can be unknotted with 2g null-homologous twists and that there exist genus g knots that cannot be unknotted with fewer than 2g null-homologous twists.","PeriodicalId":270093,"journal":{"name":"Topology and Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Null-homologous unknottings\",\"authors\":\"C. Livingston\",\"doi\":\"10.4171/irma/33-1/3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Every knot can be unknotted with two generalized twists; this was first proved by Ohyama. Here we prove that any knot of genus g can be unknotted with 2g null-homologous twists and that there exist genus g knots that cannot be unknotted with fewer than 2g null-homologous twists.\",\"PeriodicalId\":270093,\"journal\":{\"name\":\"Topology and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/irma/33-1/3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/irma/33-1/3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

每个结都可以用两个广义扭转解开;这是由Ohyama首先证明的。本文证明了g属的任何结点都可以用2g的零同源扭转解结,并且存在不能用小于2g的零同源扭转解结的g属结点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Null-homologous unknottings
Every knot can be unknotted with two generalized twists; this was first proved by Ohyama. Here we prove that any knot of genus g can be unknotted with 2g null-homologous twists and that there exist genus g knots that cannot be unknotted with fewer than 2g null-homologous twists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信