基于改进LM和SOFM-MLP混合神经网络的高效天气预报系统

S. Baboo, I. Shereef
{"title":"基于改进LM和SOFM-MLP混合神经网络的高效天气预报系统","authors":"S. Baboo, I. Shereef","doi":"10.26483/IJARCS.V1I4.193","DOIUrl":null,"url":null,"abstract":"In this paper, primarily hybrid network is illustrated, which integrates a Self-Organizing Feature Map (SOFM) and a Multilayer Perceptron Network (MLP) to understand a much better prediction system. Then, it is demonstrated that the use of appropriate features can not only reduce the number of features, but also can improve the prediction accuracy. A feature selection MLP selects significant features online while learning the prediction task. Moreover, in this proposed approach, MLP is trained using Modified Levenberg-Marquardt algorithm for better convergence and performance. The experimental results show that the proposed approach provides significant prediction result with very less error rates.","PeriodicalId":360729,"journal":{"name":"Automation and Autonomous System","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Weather Forecasting System Using a Hybrid Neural Network SOFM–MLP with Modified LM\",\"authors\":\"S. Baboo, I. Shereef\",\"doi\":\"10.26483/IJARCS.V1I4.193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, primarily hybrid network is illustrated, which integrates a Self-Organizing Feature Map (SOFM) and a Multilayer Perceptron Network (MLP) to understand a much better prediction system. Then, it is demonstrated that the use of appropriate features can not only reduce the number of features, but also can improve the prediction accuracy. A feature selection MLP selects significant features online while learning the prediction task. Moreover, in this proposed approach, MLP is trained using Modified Levenberg-Marquardt algorithm for better convergence and performance. The experimental results show that the proposed approach provides significant prediction result with very less error rates.\",\"PeriodicalId\":360729,\"journal\":{\"name\":\"Automation and Autonomous System\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation and Autonomous System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26483/IJARCS.V1I4.193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation and Autonomous System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26483/IJARCS.V1I4.193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种主要的混合网络,它将自组织特征映射(SOFM)和多层感知器网络(MLP)相结合,以更好地理解预测系统。结果表明,使用合适的特征不仅可以减少特征数量,而且可以提高预测精度。特征选择MLP在学习预测任务的同时在线选择重要的特征。此外,在该方法中,MLP使用改进的Levenberg-Marquardt算法进行训练,以获得更好的收敛性和性能。实验结果表明,该方法具有较好的预测效果和较低的误差率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Weather Forecasting System Using a Hybrid Neural Network SOFM–MLP with Modified LM
In this paper, primarily hybrid network is illustrated, which integrates a Self-Organizing Feature Map (SOFM) and a Multilayer Perceptron Network (MLP) to understand a much better prediction system. Then, it is demonstrated that the use of appropriate features can not only reduce the number of features, but also can improve the prediction accuracy. A feature selection MLP selects significant features online while learning the prediction task. Moreover, in this proposed approach, MLP is trained using Modified Levenberg-Marquardt algorithm for better convergence and performance. The experimental results show that the proposed approach provides significant prediction result with very less error rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信