基于互信息阈值的无监督特征选择检测

Ciarán Ó Conaire, N. O’Connor
{"title":"基于互信息阈值的无监督特征选择检测","authors":"Ciarán Ó Conaire, N. O’Connor","doi":"10.1109/WIAMIS.2008.10","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for unsupervised selection of features for detecting important events in a surveillance context. While traditional feature selection requires manually annotated ground truth to choose the best features, we examine the possibility of exploiting the redundancy between a pair of independent data sources for selecting good detection features. Building on our prior work on mutual information thresholding, we show that strong agreement between data sources indicates strong detection performance. Experimental tests, combining visual and audio data, show that the best performing features can be automatically selected by taking advantage of the common information shared by the sensors.","PeriodicalId":325635,"journal":{"name":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Unsupervised Feature Selection for Detection Using Mutual Information Thresholding\",\"authors\":\"Ciarán Ó Conaire, N. O’Connor\",\"doi\":\"10.1109/WIAMIS.2008.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for unsupervised selection of features for detecting important events in a surveillance context. While traditional feature selection requires manually annotated ground truth to choose the best features, we examine the possibility of exploiting the redundancy between a pair of independent data sources for selecting good detection features. Building on our prior work on mutual information thresholding, we show that strong agreement between data sources indicates strong detection performance. Experimental tests, combining visual and audio data, show that the best performing features can be automatically selected by taking advantage of the common information shared by the sensors.\",\"PeriodicalId\":325635,\"journal\":{\"name\":\"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIAMIS.2008.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2008.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种用于监测环境中重要事件检测的无监督特征选择方法。传统的特征选择需要手动标注的基础真值来选择最佳特征,而我们研究了利用一对独立数据源之间的冗余来选择良好检测特征的可能性。在我们之前关于互信息阈值的工作的基础上,我们表明数据源之间的强一致性表明了强检测性能。结合视觉和音频数据的实验测试表明,利用传感器共享的公共信息,可以自动选择性能最好的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Feature Selection for Detection Using Mutual Information Thresholding
This paper proposes a method for unsupervised selection of features for detecting important events in a surveillance context. While traditional feature selection requires manually annotated ground truth to choose the best features, we examine the possibility of exploiting the redundancy between a pair of independent data sources for selecting good detection features. Building on our prior work on mutual information thresholding, we show that strong agreement between data sources indicates strong detection performance. Experimental tests, combining visual and audio data, show that the best performing features can be automatically selected by taking advantage of the common information shared by the sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信