{"title":"使用可变恢复速率建模外周肌肉疲劳","authors":"T. Xia","doi":"10.54941/ahfe100077","DOIUrl":null,"url":null,"abstract":"Muscle fatigue is a transient and reversible decrease in performance capacity after a period of physical exertion. A variety of approaches have been applied to model muscle fatigue. Recently a theoretical, phenomenal parameter-based model (Liu-Xia model) was proposed with the capability of predicting fatigue for tasks of any force-time history. The Liu-Xia model has two parameters F and R that define the fatigue and recovery behavior, respectively. Previously, F and R were treated as constant in model validation. In the current study, R is redefined as a function of exertion level in attempt to reflect the effect of muscle contraction on blood flow. The purpose is to examine if an R varying with exertion level can improve model prediction for low intensity, static and intermittent tasks. Particularly, R is modeled as a step-wise function of three regions: 0-10% maximum voluntary contraction (MVC), no occlusion; 10-50% MVC, 0-100% occlusion, assuming a linear relationship in the region; and 51-100%, full occlusion. The results suggest that an R varying with exertion level may serve as a viable way to improve model performance, dependent on a better modeling of the relationship between muscle contraction and blood flow.","PeriodicalId":134696,"journal":{"name":"Advances in Physical Ergonomics and Human Factors: Part II","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling Peripheral Muscle Fatigue Using a Variable Recovery Rate\",\"authors\":\"T. Xia\",\"doi\":\"10.54941/ahfe100077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Muscle fatigue is a transient and reversible decrease in performance capacity after a period of physical exertion. A variety of approaches have been applied to model muscle fatigue. Recently a theoretical, phenomenal parameter-based model (Liu-Xia model) was proposed with the capability of predicting fatigue for tasks of any force-time history. The Liu-Xia model has two parameters F and R that define the fatigue and recovery behavior, respectively. Previously, F and R were treated as constant in model validation. In the current study, R is redefined as a function of exertion level in attempt to reflect the effect of muscle contraction on blood flow. The purpose is to examine if an R varying with exertion level can improve model prediction for low intensity, static and intermittent tasks. Particularly, R is modeled as a step-wise function of three regions: 0-10% maximum voluntary contraction (MVC), no occlusion; 10-50% MVC, 0-100% occlusion, assuming a linear relationship in the region; and 51-100%, full occlusion. The results suggest that an R varying with exertion level may serve as a viable way to improve model performance, dependent on a better modeling of the relationship between muscle contraction and blood flow.\",\"PeriodicalId\":134696,\"journal\":{\"name\":\"Advances in Physical Ergonomics and Human Factors: Part II\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physical Ergonomics and Human Factors: Part II\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54941/ahfe100077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physical Ergonomics and Human Factors: Part II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe100077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling Peripheral Muscle Fatigue Using a Variable Recovery Rate
Muscle fatigue is a transient and reversible decrease in performance capacity after a period of physical exertion. A variety of approaches have been applied to model muscle fatigue. Recently a theoretical, phenomenal parameter-based model (Liu-Xia model) was proposed with the capability of predicting fatigue for tasks of any force-time history. The Liu-Xia model has two parameters F and R that define the fatigue and recovery behavior, respectively. Previously, F and R were treated as constant in model validation. In the current study, R is redefined as a function of exertion level in attempt to reflect the effect of muscle contraction on blood flow. The purpose is to examine if an R varying with exertion level can improve model prediction for low intensity, static and intermittent tasks. Particularly, R is modeled as a step-wise function of three regions: 0-10% maximum voluntary contraction (MVC), no occlusion; 10-50% MVC, 0-100% occlusion, assuming a linear relationship in the region; and 51-100%, full occlusion. The results suggest that an R varying with exertion level may serve as a viable way to improve model performance, dependent on a better modeling of the relationship between muscle contraction and blood flow.