J. Parker, F. Dovis, Benjamin Anderson, L. Ansalone, B. Ashman, F. Bauer, G. D'Amore, C. Facchinetti, S. Fantinato, G. Impresario, Stephen A. McKim, Efer Miotti, James J. Miller, M. Musmeci, O. Pozzobon, Lauren Schlenker, A. Tuozzi, Lisa M. Valencia
{"title":"月球GNSS接收机实验(LuGRE)","authors":"J. Parker, F. Dovis, Benjamin Anderson, L. Ansalone, B. Ashman, F. Bauer, G. D'Amore, C. Facchinetti, S. Fantinato, G. Impresario, Stephen A. McKim, Efer Miotti, James J. Miller, M. Musmeci, O. Pozzobon, Lauren Schlenker, A. Tuozzi, Lisa M. Valencia","doi":"10.33012/2022.18199","DOIUrl":null,"url":null,"abstract":"The Lunar GNSS Receiver Experiment (LuGRE) is a joint NASA-Italian Space Agency (ASI) payload on the Firefly Blue Ghost Mission 1 (BGM1) with the goal to demonstrate GNSS-based positioning, navigation, and timing at the Moon. LuGRE was chosen by the NASA Commercial Lunar Payload Services (CLPS) program as one of ten payloads on its “19D” task order for delivery to the lunar surface in 2023. The LuGRE payload consists of a weak-signal GNSS receiver, a high-gain L-band patch antenna, a low-noise amplifier, and an RF filter. The receiver will track GPS L1 C/A and L5, and Galileo E1 and E5a signals and will return pseudorange, carrier phase, and Doppler measurements to the ground. It will also calculate least-squares point solutions and Kalman-filter based navigation solutions onboard. In addition, the receiver features the capability to record raw I/Q baseband samples for downlink and ground processing. way for use by future lunar Gateway, robotic and human landers, and rovers. This paper provides a detailed overview of the LuGRE payload, including its design, concept of operations, and its predicted ability to meet its core science objectives. The baseline science investigations and priorities are outlined. Simulated performance results are shown based on the latest calibrated models including signal strength, signal availability, onboard navigation performance and convergence properties, and ground-based post-processed navigation performance.","PeriodicalId":262695,"journal":{"name":"The International Technical Meeting of the The Institute of Navigation","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"The Lunar GNSS Receiver Experiment (LuGRE)\",\"authors\":\"J. Parker, F. Dovis, Benjamin Anderson, L. Ansalone, B. Ashman, F. Bauer, G. D'Amore, C. Facchinetti, S. Fantinato, G. Impresario, Stephen A. McKim, Efer Miotti, James J. Miller, M. Musmeci, O. Pozzobon, Lauren Schlenker, A. Tuozzi, Lisa M. Valencia\",\"doi\":\"10.33012/2022.18199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Lunar GNSS Receiver Experiment (LuGRE) is a joint NASA-Italian Space Agency (ASI) payload on the Firefly Blue Ghost Mission 1 (BGM1) with the goal to demonstrate GNSS-based positioning, navigation, and timing at the Moon. LuGRE was chosen by the NASA Commercial Lunar Payload Services (CLPS) program as one of ten payloads on its “19D” task order for delivery to the lunar surface in 2023. The LuGRE payload consists of a weak-signal GNSS receiver, a high-gain L-band patch antenna, a low-noise amplifier, and an RF filter. The receiver will track GPS L1 C/A and L5, and Galileo E1 and E5a signals and will return pseudorange, carrier phase, and Doppler measurements to the ground. It will also calculate least-squares point solutions and Kalman-filter based navigation solutions onboard. In addition, the receiver features the capability to record raw I/Q baseband samples for downlink and ground processing. way for use by future lunar Gateway, robotic and human landers, and rovers. This paper provides a detailed overview of the LuGRE payload, including its design, concept of operations, and its predicted ability to meet its core science objectives. The baseline science investigations and priorities are outlined. Simulated performance results are shown based on the latest calibrated models including signal strength, signal availability, onboard navigation performance and convergence properties, and ground-based post-processed navigation performance.\",\"PeriodicalId\":262695,\"journal\":{\"name\":\"The International Technical Meeting of the The Institute of Navigation\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Technical Meeting of the The Institute of Navigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33012/2022.18199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Technical Meeting of the The Institute of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33012/2022.18199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Lunar GNSS Receiver Experiment (LuGRE) is a joint NASA-Italian Space Agency (ASI) payload on the Firefly Blue Ghost Mission 1 (BGM1) with the goal to demonstrate GNSS-based positioning, navigation, and timing at the Moon. LuGRE was chosen by the NASA Commercial Lunar Payload Services (CLPS) program as one of ten payloads on its “19D” task order for delivery to the lunar surface in 2023. The LuGRE payload consists of a weak-signal GNSS receiver, a high-gain L-band patch antenna, a low-noise amplifier, and an RF filter. The receiver will track GPS L1 C/A and L5, and Galileo E1 and E5a signals and will return pseudorange, carrier phase, and Doppler measurements to the ground. It will also calculate least-squares point solutions and Kalman-filter based navigation solutions onboard. In addition, the receiver features the capability to record raw I/Q baseband samples for downlink and ground processing. way for use by future lunar Gateway, robotic and human landers, and rovers. This paper provides a detailed overview of the LuGRE payload, including its design, concept of operations, and its predicted ability to meet its core science objectives. The baseline science investigations and priorities are outlined. Simulated performance results are shown based on the latest calibrated models including signal strength, signal availability, onboard navigation performance and convergence properties, and ground-based post-processed navigation performance.