基于增长高斯混合模型的增量学习

A. Bouchachia, C. Vanaret
{"title":"基于增长高斯混合模型的增量学习","authors":"A. Bouchachia, C. Vanaret","doi":"10.1109/ICMLA.2011.79","DOIUrl":null,"url":null,"abstract":"Incremental learning aims at equipping data-driven systems with self-monitoring and self-adaptation mechanisms to accommodate new data in an online setting. The resulting model underlying the system can be adjusted whenever data become available. The present paper proposes a new incremental learning algorithm, called 2G2M, to learn Growing Gaussian Mixture Models. The algorithm is furnished with abilities (1) to accommodate data online, (2) to maintain low complexity of the model, and (3) to reconcile labeled and unlabeled data. To discuss the efficiency of the proposed incremental learning algorithm, an empirical evaluation is provided.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Incremental Learning Based on Growing Gaussian Mixture Models\",\"authors\":\"A. Bouchachia, C. Vanaret\",\"doi\":\"10.1109/ICMLA.2011.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incremental learning aims at equipping data-driven systems with self-monitoring and self-adaptation mechanisms to accommodate new data in an online setting. The resulting model underlying the system can be adjusted whenever data become available. The present paper proposes a new incremental learning algorithm, called 2G2M, to learn Growing Gaussian Mixture Models. The algorithm is furnished with abilities (1) to accommodate data online, (2) to maintain low complexity of the model, and (3) to reconcile labeled and unlabeled data. To discuss the efficiency of the proposed incremental learning algorithm, an empirical evaluation is provided.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

增量学习旨在为数据驱动的系统配备自我监测和自适应机制,以适应在线环境中的新数据。当数据可用时,可以调整系统底层的生成模型。本文提出了一种新的增量学习算法,称为2G2M,用于学习高斯混合增长模型。该算法具有以下能力:(1)适应在线数据;(2)保持模型的低复杂度;(3)调和标记和未标记数据。为了讨论所提出的增量学习算法的效率,提供了一个经验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental Learning Based on Growing Gaussian Mixture Models
Incremental learning aims at equipping data-driven systems with self-monitoring and self-adaptation mechanisms to accommodate new data in an online setting. The resulting model underlying the system can be adjusted whenever data become available. The present paper proposes a new incremental learning algorithm, called 2G2M, to learn Growing Gaussian Mixture Models. The algorithm is furnished with abilities (1) to accommodate data online, (2) to maintain low complexity of the model, and (3) to reconcile labeled and unlabeled data. To discuss the efficiency of the proposed incremental learning algorithm, an empirical evaluation is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信