{"title":"基于增长高斯混合模型的增量学习","authors":"A. Bouchachia, C. Vanaret","doi":"10.1109/ICMLA.2011.79","DOIUrl":null,"url":null,"abstract":"Incremental learning aims at equipping data-driven systems with self-monitoring and self-adaptation mechanisms to accommodate new data in an online setting. The resulting model underlying the system can be adjusted whenever data become available. The present paper proposes a new incremental learning algorithm, called 2G2M, to learn Growing Gaussian Mixture Models. The algorithm is furnished with abilities (1) to accommodate data online, (2) to maintain low complexity of the model, and (3) to reconcile labeled and unlabeled data. To discuss the efficiency of the proposed incremental learning algorithm, an empirical evaluation is provided.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Incremental Learning Based on Growing Gaussian Mixture Models\",\"authors\":\"A. Bouchachia, C. Vanaret\",\"doi\":\"10.1109/ICMLA.2011.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incremental learning aims at equipping data-driven systems with self-monitoring and self-adaptation mechanisms to accommodate new data in an online setting. The resulting model underlying the system can be adjusted whenever data become available. The present paper proposes a new incremental learning algorithm, called 2G2M, to learn Growing Gaussian Mixture Models. The algorithm is furnished with abilities (1) to accommodate data online, (2) to maintain low complexity of the model, and (3) to reconcile labeled and unlabeled data. To discuss the efficiency of the proposed incremental learning algorithm, an empirical evaluation is provided.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Incremental Learning Based on Growing Gaussian Mixture Models
Incremental learning aims at equipping data-driven systems with self-monitoring and self-adaptation mechanisms to accommodate new data in an online setting. The resulting model underlying the system can be adjusted whenever data become available. The present paper proposes a new incremental learning algorithm, called 2G2M, to learn Growing Gaussian Mixture Models. The algorithm is furnished with abilities (1) to accommodate data online, (2) to maintain low complexity of the model, and (3) to reconcile labeled and unlabeled data. To discuss the efficiency of the proposed incremental learning algorithm, an empirical evaluation is provided.