一种新的评价和发展纹理相似度度量的主观程序

J. Zujovic, T. Pappas, D. Neuhoff, R. Egmond, H. Ridder
{"title":"一种新的评价和发展纹理相似度度量的主观程序","authors":"J. Zujovic, T. Pappas, D. Neuhoff, R. Egmond, H. Ridder","doi":"10.1109/IVMSPW.2011.5970366","DOIUrl":null,"url":null,"abstract":"In order to facilitate the development of objective texture similarity metrics and to evaluate their performance, one needs a large texture database accurately labeled with perceived similarities between images. We propose ViSiProG, a new Visual Similarity by Progressive Grouping procedure for conducting subjective experiments that organizes a texture database into clusters of visually similar images. The grouping is based on visual blending, and greatly simplifies pairwise labeling. ViSiProG collects subjective data in an efficient and effectivemanner, so that a relatively large database of textures can be accommodated. Experimental results and comparisons with structural texture similarity metrics demonstrate both the effectiveness of the proposed subjective testing procedure and the performance of the metrics.","PeriodicalId":405588,"journal":{"name":"2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A new subjective procedure for evaluation and development of texture similarity metrics\",\"authors\":\"J. Zujovic, T. Pappas, D. Neuhoff, R. Egmond, H. Ridder\",\"doi\":\"10.1109/IVMSPW.2011.5970366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to facilitate the development of objective texture similarity metrics and to evaluate their performance, one needs a large texture database accurately labeled with perceived similarities between images. We propose ViSiProG, a new Visual Similarity by Progressive Grouping procedure for conducting subjective experiments that organizes a texture database into clusters of visually similar images. The grouping is based on visual blending, and greatly simplifies pairwise labeling. ViSiProG collects subjective data in an efficient and effectivemanner, so that a relatively large database of textures can be accommodated. Experimental results and comparisons with structural texture similarity metrics demonstrate both the effectiveness of the proposed subjective testing procedure and the performance of the metrics.\",\"PeriodicalId\":405588,\"journal\":{\"name\":\"2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVMSPW.2011.5970366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2011.5970366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

为了促进客观纹理相似度度量的发展并评估其性能,需要一个大型纹理数据库,准确地标记图像之间的感知相似度。我们提出了ViSiProG,一个新的视觉相似性渐进分组程序,用于进行主观实验,将纹理数据库组织成视觉上相似的图像簇。分组基于视觉混合,极大地简化了两两标记。ViSiProG以高效和有效的方式收集主观数据,因此可以容纳一个相对较大的纹理数据库。实验结果和与结构纹理相似度度量的比较表明了所提出的主观测试方法的有效性和度量的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new subjective procedure for evaluation and development of texture similarity metrics
In order to facilitate the development of objective texture similarity metrics and to evaluate their performance, one needs a large texture database accurately labeled with perceived similarities between images. We propose ViSiProG, a new Visual Similarity by Progressive Grouping procedure for conducting subjective experiments that organizes a texture database into clusters of visually similar images. The grouping is based on visual blending, and greatly simplifies pairwise labeling. ViSiProG collects subjective data in an efficient and effectivemanner, so that a relatively large database of textures can be accommodated. Experimental results and comparisons with structural texture similarity metrics demonstrate both the effectiveness of the proposed subjective testing procedure and the performance of the metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信