单位球面上具有莫比乌斯截面曲率的子流形

Kaiwen Guo
{"title":"单位球面上具有莫比乌斯截面曲率的子流形","authors":"Kaiwen Guo","doi":"10.1109/ICCASE.2011.5997750","DOIUrl":null,"url":null,"abstract":"Let M be a hypersurface with the parallal Moebius second curvature in a unit sphere. HU Zejun and LI Haizhong classified the hypersurface. Let M be a compact submanifold with constant scarlar curvature in a unit sphere, they classified the submanifold. Let M be a hypersurface with vanishing Moe- bius form and hramonic curvature in a unit sphere, we dicuss some properties of the hypersurface; let M be a compact sub- manifold with vanishing Moebius form and a sectional curva-ture satisfied a certain condition, we dicuss some properties of the submanifold in this paper.","PeriodicalId":369749,"journal":{"name":"2011 International Conference on Control, Automation and Systems Engineering (CASE)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Submanifolds with Moebius Sectional Curvature in a Unit Sphere\",\"authors\":\"Kaiwen Guo\",\"doi\":\"10.1109/ICCASE.2011.5997750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let M be a hypersurface with the parallal Moebius second curvature in a unit sphere. HU Zejun and LI Haizhong classified the hypersurface. Let M be a compact submanifold with constant scarlar curvature in a unit sphere, they classified the submanifold. Let M be a hypersurface with vanishing Moe- bius form and hramonic curvature in a unit sphere, we dicuss some properties of the hypersurface; let M be a compact sub- manifold with vanishing Moebius form and a sectional curva-ture satisfied a certain condition, we dicuss some properties of the submanifold in this paper.\",\"PeriodicalId\":369749,\"journal\":{\"name\":\"2011 International Conference on Control, Automation and Systems Engineering (CASE)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Control, Automation and Systems Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCASE.2011.5997750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Control, Automation and Systems Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCASE.2011.5997750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设M为单位球面上具有平行莫比乌斯第二曲率的超曲面。胡泽军、李海忠对超曲面进行了分类。设M为单位球上具有常标量曲率的紧子流形,他们对子流形进行了分类。设M为单位球上具有消失的Moe- bius形和共轭曲率的超曲面,讨论了该超曲面的一些性质;设M是一个具有消失的莫比乌斯形且截面曲率满足一定条件的紧子流形,本文讨论了该子流形的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Submanifolds with Moebius Sectional Curvature in a Unit Sphere
Let M be a hypersurface with the parallal Moebius second curvature in a unit sphere. HU Zejun and LI Haizhong classified the hypersurface. Let M be a compact submanifold with constant scarlar curvature in a unit sphere, they classified the submanifold. Let M be a hypersurface with vanishing Moe- bius form and hramonic curvature in a unit sphere, we dicuss some properties of the hypersurface; let M be a compact sub- manifold with vanishing Moebius form and a sectional curva-ture satisfied a certain condition, we dicuss some properties of the submanifold in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信