稀疏线性系统信念传播的渐近均方最优性

Dongning Guo, Chih-Chun Wang
{"title":"稀疏线性系统信念传播的渐近均方最优性","authors":"Dongning Guo, Chih-Chun Wang","doi":"10.1109/ITW2.2006.323786","DOIUrl":null,"url":null,"abstract":"This paper studies the estimation of a high-dimensional vector signal where the observation is a known \"sparse\" linear transformation of the signal corrupted by additive Gaussian noise. A paradigm of such a linear system is code-division multiple access (CDMA) channel with sparse spreading matrix. Assuming a \"semi-regular\" ensemble of sparse matrix linear transformations, where the bi-partite graph describing the system is asymptotically cycle-free, it is shown that belief propagation (BP) achieves the minimum mean-square error (MMSE) in estimating the transformation of the input vector in the large-system limit. The result holds regardless of the the distribution and power of the input symbols. Furthermore, the mean squared error of estimating each symbol of the input vector using BP is proved to be equal to the MMSE of estimating the same symbol through a scalar Gaussian channel with some degradation in the signal-to-noise ratio (SNR). The degradation, called the efficiency, is determined from a fixed-point equation due to Guo and Verdu, which is a generalization of Tanaka's formula to arbitrary prior distributions","PeriodicalId":299513,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","volume":"105 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Asymptotic Mean-Square Optimality of Belief Propagation for Sparse Linear Systems\",\"authors\":\"Dongning Guo, Chih-Chun Wang\",\"doi\":\"10.1109/ITW2.2006.323786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the estimation of a high-dimensional vector signal where the observation is a known \\\"sparse\\\" linear transformation of the signal corrupted by additive Gaussian noise. A paradigm of such a linear system is code-division multiple access (CDMA) channel with sparse spreading matrix. Assuming a \\\"semi-regular\\\" ensemble of sparse matrix linear transformations, where the bi-partite graph describing the system is asymptotically cycle-free, it is shown that belief propagation (BP) achieves the minimum mean-square error (MMSE) in estimating the transformation of the input vector in the large-system limit. The result holds regardless of the the distribution and power of the input symbols. Furthermore, the mean squared error of estimating each symbol of the input vector using BP is proved to be equal to the MMSE of estimating the same symbol through a scalar Gaussian channel with some degradation in the signal-to-noise ratio (SNR). The degradation, called the efficiency, is determined from a fixed-point equation due to Guo and Verdu, which is a generalization of Tanaka's formula to arbitrary prior distributions\",\"PeriodicalId\":299513,\"journal\":{\"name\":\"2006 IEEE Information Theory Workshop - ITW '06 Chengdu\",\"volume\":\"105 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Information Theory Workshop - ITW '06 Chengdu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW2.2006.323786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Chengdu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW2.2006.323786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

本文研究了一个高维矢量信号的估计,其中观测值是被加性高斯噪声破坏的信号的已知“稀疏”线性变换。这种线性系统的一个范例是具有稀疏扩展矩阵的码分多址(CDMA)信道。假设一个稀疏矩阵线性变换的“半正则”集合,其中描述系统的二分图是渐近无环的,证明了在大系统极限下,信念传播(BP)在估计输入向量的变换时达到最小均方误差(MMSE)。无论输入符号的分布和功率如何,结果都保持不变。进一步证明了在信噪比有所下降的情况下,用BP估计输入向量各符号的均方误差等于通过标量高斯信道估计相同符号的均方误差。这种退化称为效率,是由Guo和Verdu给出的一个定点方程确定的,该方程是Tanaka公式对任意先验分布的推广
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Mean-Square Optimality of Belief Propagation for Sparse Linear Systems
This paper studies the estimation of a high-dimensional vector signal where the observation is a known "sparse" linear transformation of the signal corrupted by additive Gaussian noise. A paradigm of such a linear system is code-division multiple access (CDMA) channel with sparse spreading matrix. Assuming a "semi-regular" ensemble of sparse matrix linear transformations, where the bi-partite graph describing the system is asymptotically cycle-free, it is shown that belief propagation (BP) achieves the minimum mean-square error (MMSE) in estimating the transformation of the input vector in the large-system limit. The result holds regardless of the the distribution and power of the input symbols. Furthermore, the mean squared error of estimating each symbol of the input vector using BP is proved to be equal to the MMSE of estimating the same symbol through a scalar Gaussian channel with some degradation in the signal-to-noise ratio (SNR). The degradation, called the efficiency, is determined from a fixed-point equation due to Guo and Verdu, which is a generalization of Tanaka's formula to arbitrary prior distributions
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信