网络系统中完全分散学习的均衡

Yan Jiang, Wenqi Cui, Baosen Zhang, Jorge Cort'es
{"title":"网络系统中完全分散学习的均衡","authors":"Yan Jiang, Wenqi Cui, Baosen Zhang, Jorge Cort'es","doi":"10.48550/arXiv.2305.09002","DOIUrl":null,"url":null,"abstract":"Existing settings of decentralized learning either require players to have full information or the system to have certain special structure that may be hard to check and hinder their applicability to practical systems. To overcome this, we identify a structure that is simple to check for linear dynamical system, where each player learns in a fully decentralized fashion to minimize its cost. We first establish the existence of pure strategy Nash equilibria in the resulting noncooperative game. We then conjecture that the Nash equilibrium is unique provided that the system satisfies an additional requirement on its structure. We also introduce a decentralized mechanism based on projected gradient descent to have agents learn the Nash equilibrium. Simulations on a $5$-player game validate our results.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Equilibria of Fully Decentralized Learning in Networked Systems\",\"authors\":\"Yan Jiang, Wenqi Cui, Baosen Zhang, Jorge Cort'es\",\"doi\":\"10.48550/arXiv.2305.09002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing settings of decentralized learning either require players to have full information or the system to have certain special structure that may be hard to check and hinder their applicability to practical systems. To overcome this, we identify a structure that is simple to check for linear dynamical system, where each player learns in a fully decentralized fashion to minimize its cost. We first establish the existence of pure strategy Nash equilibria in the resulting noncooperative game. We then conjecture that the Nash equilibrium is unique provided that the system satisfies an additional requirement on its structure. We also introduce a decentralized mechanism based on projected gradient descent to have agents learn the Nash equilibrium. Simulations on a $5$-player game validate our results.\",\"PeriodicalId\":268449,\"journal\":{\"name\":\"Conference on Learning for Dynamics & Control\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Learning for Dynamics & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.09002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.09002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现有的分散学习设置要么要求玩家拥有完整的信息,要么要求系统具有某些难以检查的特殊结构,从而阻碍其在实际系统中的适用性。为了克服这个问题,我们确定了一个简单的线性动态系统检查结构,其中每个参与者以完全分散的方式学习以最小化其成本。首先在非合作对策中建立了纯策略纳什均衡的存在性。然后我们推测,如果系统满足其结构上的附加要求,纳什均衡是唯一的。我们还引入了一种基于投影梯度下降的分散机制,使智能体学习纳什均衡。在一款5美元玩家游戏上的模拟验证了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equilibria of Fully Decentralized Learning in Networked Systems
Existing settings of decentralized learning either require players to have full information or the system to have certain special structure that may be hard to check and hinder their applicability to practical systems. To overcome this, we identify a structure that is simple to check for linear dynamical system, where each player learns in a fully decentralized fashion to minimize its cost. We first establish the existence of pure strategy Nash equilibria in the resulting noncooperative game. We then conjecture that the Nash equilibrium is unique provided that the system satisfies an additional requirement on its structure. We also introduce a decentralized mechanism based on projected gradient descent to have agents learn the Nash equilibrium. Simulations on a $5$-player game validate our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信