小波域实现了估计相关变换和加权小波变换

L. Sibul, S. T. Sidahmed, T. L. Dixon, L. G. Weiss
{"title":"小波域实现了估计相关变换和加权小波变换","authors":"L. Sibul, S. T. Sidahmed, T. L. Dixon, L. G. Weiss","doi":"10.1109/ACSSC.1996.599142","DOIUrl":null,"url":null,"abstract":"It is well known that the estimator-correlator (EC) is a maximum likelihood detector for random signals in Gaussian noise. In this paper we derive a continuous wavelet domain EC processor for the detection of signals that have propagated over stochastic propagation and scattering channels. The derivation shows that the wavelet transforms that are used for the conditional mean estimator (CME) and for the computation of the detection statistic must be defined by using reproducing kernel Hilbert space (RKHS) inner products rather than ordinary Hilbert space inner products. This fact suggests new weighted wavelet (as well as other time-frequency and time-scale) transforms. These new transforms have many applications to optimum signal processing.","PeriodicalId":270729,"journal":{"name":"Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Wavelet domain implementation of the estimator-correlator and weighted wavelet transforms\",\"authors\":\"L. Sibul, S. T. Sidahmed, T. L. Dixon, L. G. Weiss\",\"doi\":\"10.1109/ACSSC.1996.599142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that the estimator-correlator (EC) is a maximum likelihood detector for random signals in Gaussian noise. In this paper we derive a continuous wavelet domain EC processor for the detection of signals that have propagated over stochastic propagation and scattering channels. The derivation shows that the wavelet transforms that are used for the conditional mean estimator (CME) and for the computation of the detection statistic must be defined by using reproducing kernel Hilbert space (RKHS) inner products rather than ordinary Hilbert space inner products. This fact suggests new weighted wavelet (as well as other time-frequency and time-scale) transforms. These new transforms have many applications to optimum signal processing.\",\"PeriodicalId\":270729,\"journal\":{\"name\":\"Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.1996.599142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1996.599142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

众所周知,估计相关器(EC)是高斯噪声中随机信号的极大似然检测器。本文提出了一种连续小波域EC处理器,用于检测在随机传播和散射信道上传播的信号。推导表明,用于条件平均估计量(CME)和检测统计量计算的小波变换必须用再现核希尔伯特空间(RKHS)内积而不是普通的希尔伯特空间内积来定义。这一事实提出了新的加权小波变换(以及其他时频和时尺度变换)。这些新的变换在优化信号处理方面有许多应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet domain implementation of the estimator-correlator and weighted wavelet transforms
It is well known that the estimator-correlator (EC) is a maximum likelihood detector for random signals in Gaussian noise. In this paper we derive a continuous wavelet domain EC processor for the detection of signals that have propagated over stochastic propagation and scattering channels. The derivation shows that the wavelet transforms that are used for the conditional mean estimator (CME) and for the computation of the detection statistic must be defined by using reproducing kernel Hilbert space (RKHS) inner products rather than ordinary Hilbert space inner products. This fact suggests new weighted wavelet (as well as other time-frequency and time-scale) transforms. These new transforms have many applications to optimum signal processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信