基于增量和多实例学习的联合目标跟踪框架

Chengjun Xie, Jieqing Tan, Linli Zhou, Lei He, Jie Zhang, Yingqiao Bu
{"title":"基于增量和多实例学习的联合目标跟踪框架","authors":"Chengjun Xie, Jieqing Tan, Linli Zhou, Lei He, Jie Zhang, Yingqiao Bu","doi":"10.1109/ICDH.2012.41","DOIUrl":null,"url":null,"abstract":"When objects undergo large pose change, illumination variation or partial occlusion, most existed visual tracking algorithms tend to drift away from targets and even fail in tracking them. To address this issue, in this paper we propose an online algorithm by combining Incremental Learning (IL) and Multiple Instance Learning (MIL) based on local sparse representation for tracking an object in a video system. First, the target location is estimated using the online updated IL. Then, to decrease the visual drift due to the accumulation of errors while updating IL subspace with the first step results, a two-step object tracking method combining a static IL model with a dynamical MIL model is proposed. We utilize information of the static IL model involving the singular values, the Eigen template to avoid visual drift if there is no significant appearance change in the tracked objects. Otherwise, we use the dynamical MIL model to discriminate the target from the background when there is significant appearance change in the tracked objects. Experiments on some publicly available benchmarks of video sequences show that our proposed tracker is more robust and effective than others.","PeriodicalId":308799,"journal":{"name":"2012 Fourth International Conference on Digital Home","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Joint Object Tracking Framework with Incremental and Multiple Instance Learning\",\"authors\":\"Chengjun Xie, Jieqing Tan, Linli Zhou, Lei He, Jie Zhang, Yingqiao Bu\",\"doi\":\"10.1109/ICDH.2012.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When objects undergo large pose change, illumination variation or partial occlusion, most existed visual tracking algorithms tend to drift away from targets and even fail in tracking them. To address this issue, in this paper we propose an online algorithm by combining Incremental Learning (IL) and Multiple Instance Learning (MIL) based on local sparse representation for tracking an object in a video system. First, the target location is estimated using the online updated IL. Then, to decrease the visual drift due to the accumulation of errors while updating IL subspace with the first step results, a two-step object tracking method combining a static IL model with a dynamical MIL model is proposed. We utilize information of the static IL model involving the singular values, the Eigen template to avoid visual drift if there is no significant appearance change in the tracked objects. Otherwise, we use the dynamical MIL model to discriminate the target from the background when there is significant appearance change in the tracked objects. Experiments on some publicly available benchmarks of video sequences show that our proposed tracker is more robust and effective than others.\",\"PeriodicalId\":308799,\"journal\":{\"name\":\"2012 Fourth International Conference on Digital Home\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fourth International Conference on Digital Home\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDH.2012.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Digital Home","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDH.2012.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当目标发生较大姿态变化、光照变化或局部遮挡时,现有的大多数视觉跟踪算法容易偏离目标,甚至无法跟踪目标。为了解决这个问题,本文提出了一种基于局部稀疏表示的增量学习(IL)和多实例学习(MIL)相结合的在线算法,用于跟踪视频系统中的目标。首先,利用在线更新的IL估计目标位置。然后,为了减少在用第一步结果更新IL子空间时由于误差积累造成的视觉漂移,提出了一种将静态IL模型与动态MIL模型相结合的两步目标跟踪方法。我们利用静态IL模型中包含奇异值的信息和特征模板来避免被跟踪对象在没有明显外观变化的情况下的视觉漂移。另外,当被跟踪对象的外观发生显著变化时,我们使用动态MIL模型来区分目标和背景。在一些公开的视频序列基准上的实验表明,我们提出的跟踪器比其他跟踪器更鲁棒和有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Joint Object Tracking Framework with Incremental and Multiple Instance Learning
When objects undergo large pose change, illumination variation or partial occlusion, most existed visual tracking algorithms tend to drift away from targets and even fail in tracking them. To address this issue, in this paper we propose an online algorithm by combining Incremental Learning (IL) and Multiple Instance Learning (MIL) based on local sparse representation for tracking an object in a video system. First, the target location is estimated using the online updated IL. Then, to decrease the visual drift due to the accumulation of errors while updating IL subspace with the first step results, a two-step object tracking method combining a static IL model with a dynamical MIL model is proposed. We utilize information of the static IL model involving the singular values, the Eigen template to avoid visual drift if there is no significant appearance change in the tracked objects. Otherwise, we use the dynamical MIL model to discriminate the target from the background when there is significant appearance change in the tracked objects. Experiments on some publicly available benchmarks of video sequences show that our proposed tracker is more robust and effective than others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信