用铝酸钙水泥生产自密实砂浆

Gizem Türedi, Özlem Kasap Keskin, S. Keskin
{"title":"用铝酸钙水泥生产自密实砂浆","authors":"Gizem Türedi, Özlem Kasap Keskin, S. Keskin","doi":"10.22531/MUGLAJSCI.686144","DOIUrl":null,"url":null,"abstract":"The aim of this study is to produce self-compacting mortar with calcium aluminate cement. The advantages of self-compacting mortars like filling and passing ability without the need of vibration process and the superior properties of calcium aluminate cement like abrasion resistance, high thermal resistance, high acid resistance, and high early strength are intended to be combined. However, hydration process of calcium aluminate cement might cause strength reduction at later ages. Therefore, in order to prevent the possibility of strength reduction, several supplementary binders such as gypsum, fly ash, ground granulated blast furnace slag and silica fume were utilized in the mortar mixtures. In this sense, 11 different self-compacting mortars were produced, and those mortars were tested to obtain values of mini slump flow, setting time, abrasion resistance and 1, 2, 7, 28, and 90 day flexural and compressive strength. Test results showed that different supplementary binders exhibited different behaviors in mortar mixtures. As a conclusion, it was seen that the production of self-compacting mortar with calcium aluminate cement was possible.","PeriodicalId":149663,"journal":{"name":"Mugla Journal of Science and Technology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SELF-COMPACTING MORTAR PRODUCTION BY USING CALCIUM ALUMINATE CEMENT\",\"authors\":\"Gizem Türedi, Özlem Kasap Keskin, S. Keskin\",\"doi\":\"10.22531/MUGLAJSCI.686144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to produce self-compacting mortar with calcium aluminate cement. The advantages of self-compacting mortars like filling and passing ability without the need of vibration process and the superior properties of calcium aluminate cement like abrasion resistance, high thermal resistance, high acid resistance, and high early strength are intended to be combined. However, hydration process of calcium aluminate cement might cause strength reduction at later ages. Therefore, in order to prevent the possibility of strength reduction, several supplementary binders such as gypsum, fly ash, ground granulated blast furnace slag and silica fume were utilized in the mortar mixtures. In this sense, 11 different self-compacting mortars were produced, and those mortars were tested to obtain values of mini slump flow, setting time, abrasion resistance and 1, 2, 7, 28, and 90 day flexural and compressive strength. Test results showed that different supplementary binders exhibited different behaviors in mortar mixtures. As a conclusion, it was seen that the production of self-compacting mortar with calcium aluminate cement was possible.\",\"PeriodicalId\":149663,\"journal\":{\"name\":\"Mugla Journal of Science and Technology\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mugla Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22531/MUGLAJSCI.686144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mugla Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22531/MUGLAJSCI.686144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是用铝酸钙水泥生产自密实砂浆。将自密实砂浆无需振动加工即可充填、通过等优点与铝酸钙水泥的耐磨性、高耐热性、高耐酸性、高早强等优点结合起来。然而,铝酸钙水泥的水化过程可能导致后期强度降低。因此,为了防止强度降低的可能性,在砂浆混合物中加入了石膏、粉煤灰、磨粒高炉渣和硅灰等几种补充粘结剂。为此,生产了11种不同的自密实砂浆,对其进行了微坍落度流动、凝结时间、耐磨性和1、2、7、28、90天抗折强度的测试。试验结果表明,不同的补充粘结剂在砂浆混合物中表现出不同的性能。结果表明,用铝酸钙水泥生产自密实砂浆是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SELF-COMPACTING MORTAR PRODUCTION BY USING CALCIUM ALUMINATE CEMENT
The aim of this study is to produce self-compacting mortar with calcium aluminate cement. The advantages of self-compacting mortars like filling and passing ability without the need of vibration process and the superior properties of calcium aluminate cement like abrasion resistance, high thermal resistance, high acid resistance, and high early strength are intended to be combined. However, hydration process of calcium aluminate cement might cause strength reduction at later ages. Therefore, in order to prevent the possibility of strength reduction, several supplementary binders such as gypsum, fly ash, ground granulated blast furnace slag and silica fume were utilized in the mortar mixtures. In this sense, 11 different self-compacting mortars were produced, and those mortars were tested to obtain values of mini slump flow, setting time, abrasion resistance and 1, 2, 7, 28, and 90 day flexural and compressive strength. Test results showed that different supplementary binders exhibited different behaviors in mortar mixtures. As a conclusion, it was seen that the production of self-compacting mortar with calcium aluminate cement was possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信