具有ARMA创新的随机波动率模型在G7通胀预测中的应用

Bo Zhang, J. Chan, Jamie L. Cross
{"title":"具有ARMA创新的随机波动率模型在G7通胀预测中的应用","authors":"Bo Zhang, J. Chan, Jamie L. Cross","doi":"10.2139/ssrn.3222423","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a new class of stochastic volatility models with autoregressive moving average (ARMA) innovations. The conditional mean process has a flexible form that can accommodate both a state space representation and a conventional dynamic regression. The ARMA component introduces serial dependence, which results in standard Kalman filter techniques not being directly applicable. To overcome this hurdle, we develop an efficient posterior simulator that builds on recently developed precision-based algorithms. We assess the usefulness of these new models in an inflation forecasting exercise across all G7 economies. We find that the new models generally provide competitive point and density forecasts compared to standard benchmarks, and are especially useful for Canada, France, Italy, and the U.S.","PeriodicalId":170198,"journal":{"name":"ERN: Forecasting Techniques (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Stochastic Volatility Models with ARMA Innovations an Application to G7 Inflation Forecasts\",\"authors\":\"Bo Zhang, J. Chan, Jamie L. Cross\",\"doi\":\"10.2139/ssrn.3222423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce a new class of stochastic volatility models with autoregressive moving average (ARMA) innovations. The conditional mean process has a flexible form that can accommodate both a state space representation and a conventional dynamic regression. The ARMA component introduces serial dependence, which results in standard Kalman filter techniques not being directly applicable. To overcome this hurdle, we develop an efficient posterior simulator that builds on recently developed precision-based algorithms. We assess the usefulness of these new models in an inflation forecasting exercise across all G7 economies. We find that the new models generally provide competitive point and density forecasts compared to standard benchmarks, and are especially useful for Canada, France, Italy, and the U.S.\",\"PeriodicalId\":170198,\"journal\":{\"name\":\"ERN: Forecasting Techniques (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Forecasting Techniques (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3222423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Forecasting Techniques (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3222423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

摘要本文提出了一类具有自回归移动平均(ARMA)创新的随机波动模型。条件平均过程具有灵活的形式,既可以适应状态空间表示,也可以适应传统的动态回归。ARMA分量引入了串行依赖,这导致标准卡尔曼滤波技术不能直接应用。为了克服这一障碍,我们开发了一个有效的后验模拟器,该模拟器建立在最近开发的基于精度的算法之上。我们评估了这些新模型在七国集团(G7)所有经济体通胀预测中的实用性。我们发现,与标准基准相比,新模型通常提供具有竞争力的点和密度预测,并且对加拿大,法国,意大利和美国特别有用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Volatility Models with ARMA Innovations an Application to G7 Inflation Forecasts
Abstract We introduce a new class of stochastic volatility models with autoregressive moving average (ARMA) innovations. The conditional mean process has a flexible form that can accommodate both a state space representation and a conventional dynamic regression. The ARMA component introduces serial dependence, which results in standard Kalman filter techniques not being directly applicable. To overcome this hurdle, we develop an efficient posterior simulator that builds on recently developed precision-based algorithms. We assess the usefulness of these new models in an inflation forecasting exercise across all G7 economies. We find that the new models generally provide competitive point and density forecasts compared to standard benchmarks, and are especially useful for Canada, France, Italy, and the U.S.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信