利用大量轨迹提高室内PDR轨迹精度的方法

Kosuke Yotsuya, Nobuyuki Ito, K. Naito, N. Chujo, T. Mizuno, K. Kaji
{"title":"利用大量轨迹提高室内PDR轨迹精度的方法","authors":"Kosuke Yotsuya, Nobuyuki Ito, K. Naito, N. Chujo, T. Mizuno, K. Kaji","doi":"10.23919/ICMU.2018.8653262","DOIUrl":null,"url":null,"abstract":"Building structure information is essential for achieving various indoor location-based services (ILBSs). Our approach integrates a large amount of pedestrian trajectories acquired by pedestrian dead reckoning (PDR) for generating a pedestrian network structure. To generate highly accurate pedestrian network structures, the accuracy of each trajectory must be improved. In this paper, we propose a method to improve the accuracy of indoor PDR trajectories using many of them. First, we select reliable trajectories based on the stability of the sensing data. Next, by analyzing the trend of step lengths, we correct the length of the trajectories. Finally, with same-route trajectories, we generate average trajectories for each route. We experimentally used HASC-IPSC and found that our proposed method improved the accuracy of the trajectories. The cumulative error rate of the original pedestrian trajectory was 0.1111 [m/s]. After adapting our proposed method, the rate improved to 0.0622[m/s].","PeriodicalId":398108,"journal":{"name":"2018 Eleventh International Conference on Mobile Computing and Ubiquitous Network (ICMU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method to Improve Accuracy of Indoor PDR Trajectories Using a Large Amount of Trajectories\",\"authors\":\"Kosuke Yotsuya, Nobuyuki Ito, K. Naito, N. Chujo, T. Mizuno, K. Kaji\",\"doi\":\"10.23919/ICMU.2018.8653262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building structure information is essential for achieving various indoor location-based services (ILBSs). Our approach integrates a large amount of pedestrian trajectories acquired by pedestrian dead reckoning (PDR) for generating a pedestrian network structure. To generate highly accurate pedestrian network structures, the accuracy of each trajectory must be improved. In this paper, we propose a method to improve the accuracy of indoor PDR trajectories using many of them. First, we select reliable trajectories based on the stability of the sensing data. Next, by analyzing the trend of step lengths, we correct the length of the trajectories. Finally, with same-route trajectories, we generate average trajectories for each route. We experimentally used HASC-IPSC and found that our proposed method improved the accuracy of the trajectories. The cumulative error rate of the original pedestrian trajectory was 0.1111 [m/s]. After adapting our proposed method, the rate improved to 0.0622[m/s].\",\"PeriodicalId\":398108,\"journal\":{\"name\":\"2018 Eleventh International Conference on Mobile Computing and Ubiquitous Network (ICMU)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Eleventh International Conference on Mobile Computing and Ubiquitous Network (ICMU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICMU.2018.8653262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eleventh International Conference on Mobile Computing and Ubiquitous Network (ICMU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICMU.2018.8653262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建筑结构信息对于实现各种室内定位服务(ILBSs)至关重要。我们的方法集成了通过行人航位推算(PDR)获得的大量行人轨迹,以生成行人网络结构。为了生成高精度的行人网络结构,必须提高每条轨迹的精度。在本文中,我们提出了一种利用多个轨迹来提高室内PDR轨迹精度的方法。首先,我们根据传感数据的稳定性选择可靠的轨迹。其次,通过分析步长变化趋势,对轨迹长度进行校正。最后,对于相同路线的轨迹,我们为每条路线生成平均轨迹。通过HASC-IPSC实验,我们发现我们提出的方法提高了轨迹的精度。原始行人轨迹的累积错误率为0.1111 [m/s]。采用本文提出的方法后,速度提高到0.0622[m/s]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method to Improve Accuracy of Indoor PDR Trajectories Using a Large Amount of Trajectories
Building structure information is essential for achieving various indoor location-based services (ILBSs). Our approach integrates a large amount of pedestrian trajectories acquired by pedestrian dead reckoning (PDR) for generating a pedestrian network structure. To generate highly accurate pedestrian network structures, the accuracy of each trajectory must be improved. In this paper, we propose a method to improve the accuracy of indoor PDR trajectories using many of them. First, we select reliable trajectories based on the stability of the sensing data. Next, by analyzing the trend of step lengths, we correct the length of the trajectories. Finally, with same-route trajectories, we generate average trajectories for each route. We experimentally used HASC-IPSC and found that our proposed method improved the accuracy of the trajectories. The cumulative error rate of the original pedestrian trajectory was 0.1111 [m/s]. After adapting our proposed method, the rate improved to 0.0622[m/s].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信