各种图像分割方法的分析与性能评价

S. U. Mageswari, C. Mala
{"title":"各种图像分割方法的分析与性能评价","authors":"S. U. Mageswari, C. Mala","doi":"10.1109/IC3I.2014.7019614","DOIUrl":null,"url":null,"abstract":"Image segmentation is a primary stage in image processing for identifying objects of interest. Segmentation methods are classified into region based, transform based, edge based and clustering based segmentation. In this paper, segmentation methods including histogram, watershed, Canny edge detector and K-means clustering techniques are studied and analyzed. The experimental results obtained are compared with different evaluation measures including three standard image segmentation indices: rand index, globally consistency error and variation of information.","PeriodicalId":430848,"journal":{"name":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Analysis and performance evaluation of various image segmentation methods\",\"authors\":\"S. U. Mageswari, C. Mala\",\"doi\":\"10.1109/IC3I.2014.7019614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is a primary stage in image processing for identifying objects of interest. Segmentation methods are classified into region based, transform based, edge based and clustering based segmentation. In this paper, segmentation methods including histogram, watershed, Canny edge detector and K-means clustering techniques are studied and analyzed. The experimental results obtained are compared with different evaluation measures including three standard image segmentation indices: rand index, globally consistency error and variation of information.\",\"PeriodicalId\":430848,\"journal\":{\"name\":\"2014 International Conference on Contemporary Computing and Informatics (IC3I)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Contemporary Computing and Informatics (IC3I)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC3I.2014.7019614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I.2014.7019614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像分割是图像处理中识别感兴趣对象的主要步骤。分割方法分为基于区域的、基于变换的、基于边缘的和基于聚类的。本文对直方图、分水岭、Canny边缘检测和k均值聚类等分割方法进行了研究和分析。采用兰德指数、全局一致性误差和信息变异三种标准图像分割指标对实验结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and performance evaluation of various image segmentation methods
Image segmentation is a primary stage in image processing for identifying objects of interest. Segmentation methods are classified into region based, transform based, edge based and clustering based segmentation. In this paper, segmentation methods including histogram, watershed, Canny edge detector and K-means clustering techniques are studied and analyzed. The experimental results obtained are compared with different evaluation measures including three standard image segmentation indices: rand index, globally consistency error and variation of information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信