位于同一位置的无线传感器网络之间的机会直接互连

Teng Jiang, G. Merrett, N. Harris
{"title":"位于同一位置的无线传感器网络之间的机会直接互连","authors":"Teng Jiang, G. Merrett, N. Harris","doi":"10.1109/ICCCN.2013.6614166","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks are usually designed to avoid interaction with other networks. To share information, they are usually connected via a backbone network (e.g. the Internet) using gateways. The realization of visions for pervasive computing depends upon effective interconnection between individual networks. As the number of deployed sensor networks increases, the chance of any network having multiple neighbors also increases. In this paper, we argue that a paradigm shift towards 'opportunistic direct interconnection' is required. This enables one network to share information or resources with neighboring networks that it was unaware of at design-time. We present OI-MAC, which supports automatic neighbor discovery and cross- boundary data exchange without sacrificing the independence of each network. The effects of discovery and cross-boundary data injection are evaluated using both analytical models and network simulation. Initial results indicate that neighbor discovery has little effect on latency, while energy consumption increases insignificantly compared to ordinary operations of each node. If network traffic is doubled by packets 'injected' from a neighboring network, latency increases by around 7% while average power consumption increases by 20%.","PeriodicalId":207337,"journal":{"name":"2013 22nd International Conference on Computer Communication and Networks (ICCCN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Opportunistic Direct Interconnection between Co-Located Wireless Sensor Networks\",\"authors\":\"Teng Jiang, G. Merrett, N. Harris\",\"doi\":\"10.1109/ICCCN.2013.6614166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor networks are usually designed to avoid interaction with other networks. To share information, they are usually connected via a backbone network (e.g. the Internet) using gateways. The realization of visions for pervasive computing depends upon effective interconnection between individual networks. As the number of deployed sensor networks increases, the chance of any network having multiple neighbors also increases. In this paper, we argue that a paradigm shift towards 'opportunistic direct interconnection' is required. This enables one network to share information or resources with neighboring networks that it was unaware of at design-time. We present OI-MAC, which supports automatic neighbor discovery and cross- boundary data exchange without sacrificing the independence of each network. The effects of discovery and cross-boundary data injection are evaluated using both analytical models and network simulation. Initial results indicate that neighbor discovery has little effect on latency, while energy consumption increases insignificantly compared to ordinary operations of each node. If network traffic is doubled by packets 'injected' from a neighboring network, latency increases by around 7% while average power consumption increases by 20%.\",\"PeriodicalId\":207337,\"journal\":{\"name\":\"2013 22nd International Conference on Computer Communication and Networks (ICCCN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 22nd International Conference on Computer Communication and Networks (ICCCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCN.2013.6614166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 22nd International Conference on Computer Communication and Networks (ICCCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN.2013.6614166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

无线传感器网络通常被设计成避免与其他网络相互作用。为了共享信息,它们通常通过使用网关的骨干网络(例如Internet)连接起来。普适计算愿景的实现依赖于各个网络之间的有效互连。随着部署的传感器网络数量的增加,任何网络拥有多个邻居的可能性也会增加。在本文中,我们认为需要向“机会主义直接互联”的范式转变。这使得一个网络可以在设计时不知道的情况下与相邻网络共享信息或资源。我们提出了支持自动邻居发现和跨边界数据交换的OI-MAC,而不牺牲每个网络的独立性。利用分析模型和网络仿真对发现和跨界数据注入的效果进行了评估。初步结果表明,邻居发现对延迟的影响很小,而能耗与每个节点的普通操作相比增加不明显。如果从邻近网络“注入”的数据包使网络流量增加一倍,则延迟增加约7%,而平均功耗增加20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Opportunistic Direct Interconnection between Co-Located Wireless Sensor Networks
Wireless sensor networks are usually designed to avoid interaction with other networks. To share information, they are usually connected via a backbone network (e.g. the Internet) using gateways. The realization of visions for pervasive computing depends upon effective interconnection between individual networks. As the number of deployed sensor networks increases, the chance of any network having multiple neighbors also increases. In this paper, we argue that a paradigm shift towards 'opportunistic direct interconnection' is required. This enables one network to share information or resources with neighboring networks that it was unaware of at design-time. We present OI-MAC, which supports automatic neighbor discovery and cross- boundary data exchange without sacrificing the independence of each network. The effects of discovery and cross-boundary data injection are evaluated using both analytical models and network simulation. Initial results indicate that neighbor discovery has little effect on latency, while energy consumption increases insignificantly compared to ordinary operations of each node. If network traffic is doubled by packets 'injected' from a neighboring network, latency increases by around 7% while average power consumption increases by 20%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信