一种有效的无监督网络异常检测方法

M. Bhuyan, D. Bhattacharyya, J. Kalita
{"title":"一种有效的无监督网络异常检测方法","authors":"M. Bhuyan, D. Bhattacharyya, J. Kalita","doi":"10.1145/2345396.2345484","DOIUrl":null,"url":null,"abstract":"In this paper, we present an effective tree based subspace clustering technique (TreeCLUS) for finding clusters in network intrusion data and for detecting unknown attacks without using any labelled traffic or signatures or training. To establish its effectiveness in finding all possible clusters, we perform a cluster stability analysis. We also introduce an effective cluster labelling technique (CLUSLab) to generate labelled dataset based on the stable cluster set generated by TreeCLUS. CLUSLab is a multi-objective technique that exploits an ensemble approach for stability analysis of the clusters generated by TreeCLUS. We evaluate the performance of both TreeCLUS and CLUSLab in terms of several real world intrusion datasets to identify unknown attacks and find that both outperform the competing algorithms.","PeriodicalId":290400,"journal":{"name":"International Conference on Advances in Computing, Communications and Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"An effective unsupervised network anomaly detection method\",\"authors\":\"M. Bhuyan, D. Bhattacharyya, J. Kalita\",\"doi\":\"10.1145/2345396.2345484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an effective tree based subspace clustering technique (TreeCLUS) for finding clusters in network intrusion data and for detecting unknown attacks without using any labelled traffic or signatures or training. To establish its effectiveness in finding all possible clusters, we perform a cluster stability analysis. We also introduce an effective cluster labelling technique (CLUSLab) to generate labelled dataset based on the stable cluster set generated by TreeCLUS. CLUSLab is a multi-objective technique that exploits an ensemble approach for stability analysis of the clusters generated by TreeCLUS. We evaluate the performance of both TreeCLUS and CLUSLab in terms of several real world intrusion datasets to identify unknown attacks and find that both outperform the competing algorithms.\",\"PeriodicalId\":290400,\"journal\":{\"name\":\"International Conference on Advances in Computing, Communications and Informatics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advances in Computing, Communications and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2345396.2345484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advances in Computing, Communications and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2345396.2345484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

在本文中,我们提出了一种有效的基于树的子空间聚类技术(TreeCLUS),用于在网络入侵数据中发现聚类并检测未知攻击,而无需使用任何标记流量或签名或训练。为了确定它在寻找所有可能的聚类方面的有效性,我们进行了聚类稳定性分析。我们还引入了一种有效的聚类标记技术(CLUSLab),在TreeCLUS生成的稳定聚类集的基础上生成标记数据集。CLUSLab是一种多目标技术,利用集成方法对TreeCLUS生成的聚类进行稳定性分析。我们根据几个真实世界的入侵数据集评估了TreeCLUS和CLUSLab的性能,以识别未知的攻击,并发现两者都优于竞争算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective unsupervised network anomaly detection method
In this paper, we present an effective tree based subspace clustering technique (TreeCLUS) for finding clusters in network intrusion data and for detecting unknown attacks without using any labelled traffic or signatures or training. To establish its effectiveness in finding all possible clusters, we perform a cluster stability analysis. We also introduce an effective cluster labelling technique (CLUSLab) to generate labelled dataset based on the stable cluster set generated by TreeCLUS. CLUSLab is a multi-objective technique that exploits an ensemble approach for stability analysis of the clusters generated by TreeCLUS. We evaluate the performance of both TreeCLUS and CLUSLab in terms of several real world intrusion datasets to identify unknown attacks and find that both outperform the competing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信