Meng Li, Sheng Shen, Vahid Barzegar, Mohammadkazem Sadoughi, S. Laflamme, Chao Hu
{"title":"基于序贯kriging的可靠性分析的期望不确定性降低","authors":"Meng Li, Sheng Shen, Vahid Barzegar, Mohammadkazem Sadoughi, S. Laflamme, Chao Hu","doi":"10.1115/detc2020-22680","DOIUrl":null,"url":null,"abstract":"\n Several acquisition functions have been proposed to identify an optimal sequence of samples in sequential kriging-based reliability analysis. However, no single acquisition function provides better performance over the others in all cases. To address this problem, this paper proposes a new acquisition function, namely expected uncertainty reduction (EUR), that serves as a meta-criterion to select the best sample from a set of optimal samples, each identified from a large number of candidate samples according to the criterion of an acquisition function. EUR directly quantifies the expected reduction of the uncertainty in the prediction of limit-state function by adding an optimal sample. The uncertainty reduction is quantified by sampling over the kriging posterior. In the proposed EUR-based sequential sampling framework, a portfolio that consists of four acquisition functions is first employed to suggest four optimal samples at each iteration of sequential sampling. Then, EUR is employed as the meta-criterion to identify the best sample among those optimal samples. The results from two mathematical case studies show that (1) EUR-based sequential sampling can perform as well as or outperform the single use of any acquisition function in the portfolio, and (2) the best-performing acquisition function may change from one problem to another or even from one iteration to the next within a problem.","PeriodicalId":415040,"journal":{"name":"Volume 11A: 46th Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expected Uncertainty Reduction for Sequential Kriging-Based Reliability Analysis\",\"authors\":\"Meng Li, Sheng Shen, Vahid Barzegar, Mohammadkazem Sadoughi, S. Laflamme, Chao Hu\",\"doi\":\"10.1115/detc2020-22680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Several acquisition functions have been proposed to identify an optimal sequence of samples in sequential kriging-based reliability analysis. However, no single acquisition function provides better performance over the others in all cases. To address this problem, this paper proposes a new acquisition function, namely expected uncertainty reduction (EUR), that serves as a meta-criterion to select the best sample from a set of optimal samples, each identified from a large number of candidate samples according to the criterion of an acquisition function. EUR directly quantifies the expected reduction of the uncertainty in the prediction of limit-state function by adding an optimal sample. The uncertainty reduction is quantified by sampling over the kriging posterior. In the proposed EUR-based sequential sampling framework, a portfolio that consists of four acquisition functions is first employed to suggest four optimal samples at each iteration of sequential sampling. Then, EUR is employed as the meta-criterion to identify the best sample among those optimal samples. The results from two mathematical case studies show that (1) EUR-based sequential sampling can perform as well as or outperform the single use of any acquisition function in the portfolio, and (2) the best-performing acquisition function may change from one problem to another or even from one iteration to the next within a problem.\",\"PeriodicalId\":415040,\"journal\":{\"name\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11A: 46th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Expected Uncertainty Reduction for Sequential Kriging-Based Reliability Analysis
Several acquisition functions have been proposed to identify an optimal sequence of samples in sequential kriging-based reliability analysis. However, no single acquisition function provides better performance over the others in all cases. To address this problem, this paper proposes a new acquisition function, namely expected uncertainty reduction (EUR), that serves as a meta-criterion to select the best sample from a set of optimal samples, each identified from a large number of candidate samples according to the criterion of an acquisition function. EUR directly quantifies the expected reduction of the uncertainty in the prediction of limit-state function by adding an optimal sample. The uncertainty reduction is quantified by sampling over the kriging posterior. In the proposed EUR-based sequential sampling framework, a portfolio that consists of four acquisition functions is first employed to suggest four optimal samples at each iteration of sequential sampling. Then, EUR is employed as the meta-criterion to identify the best sample among those optimal samples. The results from two mathematical case studies show that (1) EUR-based sequential sampling can perform as well as or outperform the single use of any acquisition function in the portfolio, and (2) the best-performing acquisition function may change from one problem to another or even from one iteration to the next within a problem.