时间条件随机场:用于视觉跟踪的条件状态空间预测器

M. Shafiee, Z. Azimifar, P. Fieguth
{"title":"时间条件随机场:用于视觉跟踪的条件状态空间预测器","authors":"M. Shafiee, Z. Azimifar, P. Fieguth","doi":"10.1109/IRANIANMVIP.2010.5941137","DOIUrl":null,"url":null,"abstract":"We present a modified Temporal Conditional Random Fields framework for modeling and predicting object motion. To facilitate such a powerful graphical model with prediction and come up with a CRF-based predictor, we propose a set of new temporal relations for object tracking, with feature functions such as optical flow (calculated among consequent frames). We evaluate our proposed Temporal Conditional Random Field method with real and synthetic data sequences and will show that the TCRF prediction is nearly equivalent with result of template matching. Experimental results show that our proposed method estimates future target state with zero error until target dynamic changes. Our proposed modified CRF method with simple and easy to implement feature functions, can learn any target dynamic, thus, it can predict next state of target with zero error.","PeriodicalId":350778,"journal":{"name":"2010 6th Iranian Conference on Machine Vision and Image Processing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Temporal Conditional Random Fields: A conditional state space predictor for visual tracking\",\"authors\":\"M. Shafiee, Z. Azimifar, P. Fieguth\",\"doi\":\"10.1109/IRANIANMVIP.2010.5941137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a modified Temporal Conditional Random Fields framework for modeling and predicting object motion. To facilitate such a powerful graphical model with prediction and come up with a CRF-based predictor, we propose a set of new temporal relations for object tracking, with feature functions such as optical flow (calculated among consequent frames). We evaluate our proposed Temporal Conditional Random Field method with real and synthetic data sequences and will show that the TCRF prediction is nearly equivalent with result of template matching. Experimental results show that our proposed method estimates future target state with zero error until target dynamic changes. Our proposed modified CRF method with simple and easy to implement feature functions, can learn any target dynamic, thus, it can predict next state of target with zero error.\",\"PeriodicalId\":350778,\"journal\":{\"name\":\"2010 6th Iranian Conference on Machine Vision and Image Processing\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 6th Iranian Conference on Machine Vision and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANMVIP.2010.5941137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 6th Iranian Conference on Machine Vision and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2010.5941137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一个改进的时间条件随机场框架来建模和预测物体的运动。为了促进这样一个强大的图形模型的预测,并提出了一个基于crf的预测器,我们提出了一组新的时间关系用于目标跟踪,具有特征函数,如光流(在后续帧之间计算)。我们用真实数据序列和合成数据序列对所提出的时间条件随机场方法进行了评估,结果表明TCRF预测结果与模板匹配结果几乎相等。实验结果表明,在目标发生动态变化之前,该方法对目标未来状态的估计误差为零。本文提出的改进的CRF方法具有特征函数简单、易于实现的特点,可以动态学习任意目标,从而以零误差预测目标的下一个状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal Conditional Random Fields: A conditional state space predictor for visual tracking
We present a modified Temporal Conditional Random Fields framework for modeling and predicting object motion. To facilitate such a powerful graphical model with prediction and come up with a CRF-based predictor, we propose a set of new temporal relations for object tracking, with feature functions such as optical flow (calculated among consequent frames). We evaluate our proposed Temporal Conditional Random Field method with real and synthetic data sequences and will show that the TCRF prediction is nearly equivalent with result of template matching. Experimental results show that our proposed method estimates future target state with zero error until target dynamic changes. Our proposed modified CRF method with simple and easy to implement feature functions, can learn any target dynamic, thus, it can predict next state of target with zero error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信