基于非负张量分解的航空电子设备残馀粒子特征提取方法

Rui Chen, Shujuan Wang, G. Zhai, Shen Yi
{"title":"基于非负张量分解的航空电子设备残馀粒子特征提取方法","authors":"Rui Chen, Shujuan Wang, G. Zhai, Shen Yi","doi":"10.1109/I2MTC.2012.6229251","DOIUrl":null,"url":null,"abstract":"The existence of remnant particles negatively impacts the reliability of aerospace electronic equipments. The universal method to detect remnant particles is particle impact noise detection (PIND). Random vibration can be introduced to the PIND system to improve the detecting performance, and it can also provide acoustic and acceleration signals. In this paper, a new feature extraction method for remnant particles based on Non-negative Tensor Factorization (NTF) is proposed. The proposed method combines different kinds of tested signals, which not only promotes the detection performance but also figures out the material and weight of the remnant particles. We perform a set of experiments. The experimental results show that the proposed method can effectively identify the type of remnant.","PeriodicalId":387839,"journal":{"name":"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A feature extraction method for remnant particles based on non-negative tensor factorization in aerospace electronic equipments\",\"authors\":\"Rui Chen, Shujuan Wang, G. Zhai, Shen Yi\",\"doi\":\"10.1109/I2MTC.2012.6229251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of remnant particles negatively impacts the reliability of aerospace electronic equipments. The universal method to detect remnant particles is particle impact noise detection (PIND). Random vibration can be introduced to the PIND system to improve the detecting performance, and it can also provide acoustic and acceleration signals. In this paper, a new feature extraction method for remnant particles based on Non-negative Tensor Factorization (NTF) is proposed. The proposed method combines different kinds of tested signals, which not only promotes the detection performance but also figures out the material and weight of the remnant particles. We perform a set of experiments. The experimental results show that the proposed method can effectively identify the type of remnant.\",\"PeriodicalId\":387839,\"journal\":{\"name\":\"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2012.6229251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2012.6229251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

残余粒子的存在对航空航天电子设备的可靠性产生不利影响。检测残余粒子的常用方法是粒子碰撞噪声检测(PIND)。在PIND系统中引入随机振动可以提高检测性能,也可以提供声信号和加速度信号。提出了一种基于非负张量分解(NTF)的残余粒子特征提取方法。该方法结合了不同类型的被测信号,不仅提高了检测性能,而且可以计算出残余粒子的材料和重量。我们进行了一系列实验。实验结果表明,该方法能有效地识别残体类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A feature extraction method for remnant particles based on non-negative tensor factorization in aerospace electronic equipments
The existence of remnant particles negatively impacts the reliability of aerospace electronic equipments. The universal method to detect remnant particles is particle impact noise detection (PIND). Random vibration can be introduced to the PIND system to improve the detecting performance, and it can also provide acoustic and acceleration signals. In this paper, a new feature extraction method for remnant particles based on Non-negative Tensor Factorization (NTF) is proposed. The proposed method combines different kinds of tested signals, which not only promotes the detection performance but also figures out the material and weight of the remnant particles. We perform a set of experiments. The experimental results show that the proposed method can effectively identify the type of remnant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信