ACRN:用于物联网开发的大型小型管理程序

Hao Li, Xuefei Xu, Jinkui Ren, Yaozu Dong
{"title":"ACRN:用于物联网开发的大型小型管理程序","authors":"Hao Li, Xuefei Xu, Jinkui Ren, Yaozu Dong","doi":"10.1145/3313808.3313816","DOIUrl":null,"url":null,"abstract":"With the rapid growth of Internet of Things (IoT) and the new emerging IoT computing paradigm such as edge computing, it is prevalent to see that today’s real-time and functional safety devices, particularly in industrial IoT and automotive scenarios, are getting multi-functional by combining multiple platforms into single product. The new trend potentially prompts embedded virtualization as a promising solution in terms of workload consolidation, separation, and cost- effective. However, hypervisors, such as KVM and XEN, are designed to run on a server and can not be easily restructured to fulfill the requirements such as real-time constrains from IoT products. Meanwhile, existing embedded virtualization solutions are normally tailored towards specific IoT scenarios, which makes them hard to extend towards various scenarios. In addition, most commercial solutions are mature and appealing but expensive and closed-source. This paper presents ACRN, a flexible, lightweight, scalable, and open source embedded hypervisor for IoT development. By focusing on CPU and memory partitioning, and mean- while optionally offloading embedded I/O virtualization to a tiny user space device model, ACRN presents a consolidated system satisfying real-time and general-purpose needs simultaneously. By adopting customer-friendly permissive BSD license, ACRN provides a practical industry-grade solution with immediate readiness. In this paper we will de- scribe the design and implementation of ACRN, and conduct thorough evaluations to demonstrate its feasibility and effectiveness. The source code of ACRN has been released at https://github.com/projectacrn/acrn-hypervisor.","PeriodicalId":350040,"journal":{"name":"Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"ACRN: a big little hypervisor for IoT development\",\"authors\":\"Hao Li, Xuefei Xu, Jinkui Ren, Yaozu Dong\",\"doi\":\"10.1145/3313808.3313816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of Internet of Things (IoT) and the new emerging IoT computing paradigm such as edge computing, it is prevalent to see that today’s real-time and functional safety devices, particularly in industrial IoT and automotive scenarios, are getting multi-functional by combining multiple platforms into single product. The new trend potentially prompts embedded virtualization as a promising solution in terms of workload consolidation, separation, and cost- effective. However, hypervisors, such as KVM and XEN, are designed to run on a server and can not be easily restructured to fulfill the requirements such as real-time constrains from IoT products. Meanwhile, existing embedded virtualization solutions are normally tailored towards specific IoT scenarios, which makes them hard to extend towards various scenarios. In addition, most commercial solutions are mature and appealing but expensive and closed-source. This paper presents ACRN, a flexible, lightweight, scalable, and open source embedded hypervisor for IoT development. By focusing on CPU and memory partitioning, and mean- while optionally offloading embedded I/O virtualization to a tiny user space device model, ACRN presents a consolidated system satisfying real-time and general-purpose needs simultaneously. By adopting customer-friendly permissive BSD license, ACRN provides a practical industry-grade solution with immediate readiness. In this paper we will de- scribe the design and implementation of ACRN, and conduct thorough evaluations to demonstrate its feasibility and effectiveness. The source code of ACRN has been released at https://github.com/projectacrn/acrn-hypervisor.\",\"PeriodicalId\":350040,\"journal\":{\"name\":\"Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3313808.3313816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3313808.3313816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

随着物联网(IoT)的快速发展和新兴的物联网计算范式(如边缘计算),当今的实时和功能安全设备,特别是在工业物联网和汽车场景中,通过将多个平台整合到单个产品中,正在实现多功能。新的趋势可能促使嵌入式虚拟化在工作负载整合、分离和成本效益方面成为一个很有前途的解决方案。然而,像KVM和XEN这样的管理程序是为在服务器上运行而设计的,不能轻易地重组以满足物联网产品的实时限制等要求。同时,现有的嵌入式虚拟化解决方案通常是针对特定的物联网场景量身定制的,这使得它们很难扩展到各种场景。此外,大多数商业解决方案都是成熟且吸引人的,但价格昂贵且源码封闭。本文介绍了一种灵活、轻量级、可扩展的开源嵌入式物联网管理程序ACRN。通过关注CPU和内存分区,同时可选地将嵌入式I/O虚拟化卸载到一个微小的用户空间设备模型,ACRN提供了一个同时满足实时和通用需求的统一系统。通过采用客户友好的许可BSD许可证,ACRN提供了一个实用的工业级解决方案。在本文中,我们将描述ACRN的设计和实现,并进行全面的评估,以证明其可行性和有效性。ACRN的源代码已经在https://github.com/projectacrn/acrn-hypervisor上发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ACRN: a big little hypervisor for IoT development
With the rapid growth of Internet of Things (IoT) and the new emerging IoT computing paradigm such as edge computing, it is prevalent to see that today’s real-time and functional safety devices, particularly in industrial IoT and automotive scenarios, are getting multi-functional by combining multiple platforms into single product. The new trend potentially prompts embedded virtualization as a promising solution in terms of workload consolidation, separation, and cost- effective. However, hypervisors, such as KVM and XEN, are designed to run on a server and can not be easily restructured to fulfill the requirements such as real-time constrains from IoT products. Meanwhile, existing embedded virtualization solutions are normally tailored towards specific IoT scenarios, which makes them hard to extend towards various scenarios. In addition, most commercial solutions are mature and appealing but expensive and closed-source. This paper presents ACRN, a flexible, lightweight, scalable, and open source embedded hypervisor for IoT development. By focusing on CPU and memory partitioning, and mean- while optionally offloading embedded I/O virtualization to a tiny user space device model, ACRN presents a consolidated system satisfying real-time and general-purpose needs simultaneously. By adopting customer-friendly permissive BSD license, ACRN provides a practical industry-grade solution with immediate readiness. In this paper we will de- scribe the design and implementation of ACRN, and conduct thorough evaluations to demonstrate its feasibility and effectiveness. The source code of ACRN has been released at https://github.com/projectacrn/acrn-hypervisor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信