改变RBF神经网络高斯函数接受野宽度对工业还原池氟化铝预测的影响

V. Karri, F. Frost
{"title":"改变RBF神经网络高斯函数接受野宽度对工业还原池氟化铝预测的影响","authors":"V. Karri, F. Frost","doi":"10.1109/ICONIP.1999.843969","DOIUrl":null,"url":null,"abstract":"Artificial neural networks are increasingly useful computational models, consisting of highly interconnected parallel processing units. In particular, radial basis function, RBF, networks are emerging as important computational models for a broad range of applications. The Gaussian function used in RBF networks has an adjustable parameter, /spl sigma/, which specifies the diameter of the receptive field of the hidden layer neurons. The selection of /spl sigma/ is commonly carried out using heuristic techniques. The selection of /spl sigma/, as shown in this paper, plays an important role in the predictive capabilities of the RBF network. However, the use of a Gaussian function with the standard deviation of the training pattern output vector is shown to be associated with the minimum RMS error obtained using an optimum /spl sigma/ value derived using a heuristic technique. The aluminium fluoride, AlF/sub 3/, content of industrial reduction cell for aluminium production is well predicted using the RBF network with a Gaussian function /spl sigma/ value derived using the standard deviation of the training pattern output vector.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effect of altering the Gaussian function receptive field width in RBF neural networks on aluminium fluoride prediction in industrial reduction cells\",\"authors\":\"V. Karri, F. Frost\",\"doi\":\"10.1109/ICONIP.1999.843969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial neural networks are increasingly useful computational models, consisting of highly interconnected parallel processing units. In particular, radial basis function, RBF, networks are emerging as important computational models for a broad range of applications. The Gaussian function used in RBF networks has an adjustable parameter, /spl sigma/, which specifies the diameter of the receptive field of the hidden layer neurons. The selection of /spl sigma/ is commonly carried out using heuristic techniques. The selection of /spl sigma/, as shown in this paper, plays an important role in the predictive capabilities of the RBF network. However, the use of a Gaussian function with the standard deviation of the training pattern output vector is shown to be associated with the minimum RMS error obtained using an optimum /spl sigma/ value derived using a heuristic technique. The aluminium fluoride, AlF/sub 3/, content of industrial reduction cell for aluminium production is well predicted using the RBF network with a Gaussian function /spl sigma/ value derived using the standard deviation of the training pattern output vector.\",\"PeriodicalId\":237855,\"journal\":{\"name\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.1999.843969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.843969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

人工神经网络是越来越有用的计算模型,由高度互联的并行处理单元组成。特别是径向基函数,RBF,网络正在成为广泛应用的重要计算模型。RBF网络中使用的高斯函数有一个可调参数,/spl sigma/,它指定了隐藏层神经元的接受野的直径。/spl σ /的选择通常使用启发式技术进行。如本文所示,/spl σ /的选择对RBF网络的预测能力起着重要的作用。然而,使用高斯函数与训练模式输出向量的标准偏差显示与使用启发式技术导出的最佳/spl sigma/值获得的最小均方根误差相关。利用RBF网络,利用训练模式输出向量的标准差推导出高斯函数/spl σ /值,很好地预测了用于铝生产的工业还原槽的氟化铝(AlF/sub 3/)含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of altering the Gaussian function receptive field width in RBF neural networks on aluminium fluoride prediction in industrial reduction cells
Artificial neural networks are increasingly useful computational models, consisting of highly interconnected parallel processing units. In particular, radial basis function, RBF, networks are emerging as important computational models for a broad range of applications. The Gaussian function used in RBF networks has an adjustable parameter, /spl sigma/, which specifies the diameter of the receptive field of the hidden layer neurons. The selection of /spl sigma/ is commonly carried out using heuristic techniques. The selection of /spl sigma/, as shown in this paper, plays an important role in the predictive capabilities of the RBF network. However, the use of a Gaussian function with the standard deviation of the training pattern output vector is shown to be associated with the minimum RMS error obtained using an optimum /spl sigma/ value derived using a heuristic technique. The aluminium fluoride, AlF/sub 3/, content of industrial reduction cell for aluminium production is well predicted using the RBF network with a Gaussian function /spl sigma/ value derived using the standard deviation of the training pattern output vector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信