基于数据预测分析的工业微电网网络区块链物理系统自动控制分析

C. F. Pasani, E. Rohaeti
{"title":"基于数据预测分析的工业微电网网络区块链物理系统自动控制分析","authors":"C. F. Pasani, E. Rohaeti","doi":"10.17762/ijcnis.v14i2.5514","DOIUrl":null,"url":null,"abstract":"As an efficient distributed renewable energy utilization model, a microgrid is predictable to realize the higher incorporation of the industrial cyber-physical system (CPS) that has gained significant interest in the academia and industry fields. Electric grid is now facing exceptional variations in generation and load as rising number of distributed energy resources (DERs), typically interfaced via power electronics converter, have been positioned, which possess multifaceted technical problems. In the context of electric grid, Blockchain (BC) was primarily developed for peer-to-peer energy trading through cryptocurrency. This paper presents a deep learning based predictive model for automated control analysis (DLBPM-ACS) in BC assisted industrial CPS environment. The presented DLBPM-ACS technique aims to forecast the short-term energy requirement for reducing the delivery cost of electrical energy for consumers. In addition, the presented DLBPM-ACS technique employs BC for effective energy utilization monitoring and trading control. Moreover, the presented DLBPM-ACS technique employs deep belief network (DBN) model for energy prediction process. Furthermore, the artificial ecosystem optimizer (AEO) algorithm is applied for optimal tuning of the hyperparameters related to the DBN approach. A wide range of simulations was conducted and the outcomes demonstrate the better outcomes of the DLBPM-ACS technique.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial Cyber Blockchain Physical System for Microgrid in Data Based Predictive Analysis for Automatic Control Analysis\",\"authors\":\"C. F. Pasani, E. Rohaeti\",\"doi\":\"10.17762/ijcnis.v14i2.5514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As an efficient distributed renewable energy utilization model, a microgrid is predictable to realize the higher incorporation of the industrial cyber-physical system (CPS) that has gained significant interest in the academia and industry fields. Electric grid is now facing exceptional variations in generation and load as rising number of distributed energy resources (DERs), typically interfaced via power electronics converter, have been positioned, which possess multifaceted technical problems. In the context of electric grid, Blockchain (BC) was primarily developed for peer-to-peer energy trading through cryptocurrency. This paper presents a deep learning based predictive model for automated control analysis (DLBPM-ACS) in BC assisted industrial CPS environment. The presented DLBPM-ACS technique aims to forecast the short-term energy requirement for reducing the delivery cost of electrical energy for consumers. In addition, the presented DLBPM-ACS technique employs BC for effective energy utilization monitoring and trading control. Moreover, the presented DLBPM-ACS technique employs deep belief network (DBN) model for energy prediction process. Furthermore, the artificial ecosystem optimizer (AEO) algorithm is applied for optimal tuning of the hyperparameters related to the DBN approach. A wide range of simulations was conducted and the outcomes demonstrate the better outcomes of the DLBPM-ACS technique.\",\"PeriodicalId\":232613,\"journal\":{\"name\":\"Int. J. Commun. Networks Inf. Secur.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Commun. Networks Inf. Secur.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17762/ijcnis.v14i2.5514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Commun. Networks Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17762/ijcnis.v14i2.5514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微电网作为一种高效的分布式可再生能源利用模式,可预测地实现工业信息物理系统(CPS)的高度融合,已引起学术界和工业界的极大兴趣。随着越来越多的分布式能源(der)被部署,电网面临着发电和负荷的异常变化,这些分布式能源通常通过电力电子转换器进行接口,具有多方面的技术问题。在电网的背景下,区块链(BC)主要是为通过加密货币进行点对点能源交易而开发的。提出了一种基于深度学习的BC辅助工业CPS环境下自动控制分析(DLBPM-ACS)预测模型。提出的DLBPM-ACS技术旨在预测短期能源需求,以降低消费者的电力输送成本。此外,本文提出的DLBPM-ACS技术采用BC进行有效的能源利用监测和交易控制。此外,DLBPM-ACS技术采用深度信念网络(DBN)模型进行能量预测。在此基础上,应用人工生态系统优化器(AEO)算法对DBN方法相关的超参数进行了优化调整。进行了大量的仿真,结果表明DLBPM-ACS技术具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Industrial Cyber Blockchain Physical System for Microgrid in Data Based Predictive Analysis for Automatic Control Analysis
As an efficient distributed renewable energy utilization model, a microgrid is predictable to realize the higher incorporation of the industrial cyber-physical system (CPS) that has gained significant interest in the academia and industry fields. Electric grid is now facing exceptional variations in generation and load as rising number of distributed energy resources (DERs), typically interfaced via power electronics converter, have been positioned, which possess multifaceted technical problems. In the context of electric grid, Blockchain (BC) was primarily developed for peer-to-peer energy trading through cryptocurrency. This paper presents a deep learning based predictive model for automated control analysis (DLBPM-ACS) in BC assisted industrial CPS environment. The presented DLBPM-ACS technique aims to forecast the short-term energy requirement for reducing the delivery cost of electrical energy for consumers. In addition, the presented DLBPM-ACS technique employs BC for effective energy utilization monitoring and trading control. Moreover, the presented DLBPM-ACS technique employs deep belief network (DBN) model for energy prediction process. Furthermore, the artificial ecosystem optimizer (AEO) algorithm is applied for optimal tuning of the hyperparameters related to the DBN approach. A wide range of simulations was conducted and the outcomes demonstrate the better outcomes of the DLBPM-ACS technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信