Michael Eagle, Albert T. Corbett, John C. Stamper, B. McLaren, R. Baker, Angela Z. Wagner, Benjamin A. MacLaren, Aaron P. Mitchell
{"title":"从以往的学习者活动预测智能导师对学习者建模的个体差异","authors":"Michael Eagle, Albert T. Corbett, John C. Stamper, B. McLaren, R. Baker, Angela Z. Wagner, Benjamin A. MacLaren, Aaron P. Mitchell","doi":"10.1145/2930238.2930255","DOIUrl":null,"url":null,"abstract":"This study examines how accurately individual student differences in learning can be predicted from prior student learning activities. Bayesian Knowledge Tracing (BKT) predicts learner performance well and has often been employed to implement cognitive mastery. Standard BKT individualizes parameter estimates for knowledge components, but not for learners. Studies have shown that individualizing parameters for learners improves the quality of BKT fits and can lead to very different (and potentially better) practice recommendations. These studies typically derive best-fitting individualized learner parameters from learner performance in existing data logs, making the methods difficult to deploy in actual tutor use. In this work, we examine how well BKT parameters in a tutor lesson can be individualized based on learners' prior performance in reading instructional text, taking a pretest, and completing an earlier tutor lesson. We find that best-fitting individual difference estimates do not directly transfer well from one tutor lesson to another, but that predictive models incorporating variables extracted from prior reading, pretest and tutor activities perform well, when compared to a standard BKT model and a model with best-fitting individualized parameter estimates.","PeriodicalId":339100,"journal":{"name":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Predicting Individual Differences for Learner Modeling in Intelligent Tutors from Previous Learner Activities\",\"authors\":\"Michael Eagle, Albert T. Corbett, John C. Stamper, B. McLaren, R. Baker, Angela Z. Wagner, Benjamin A. MacLaren, Aaron P. Mitchell\",\"doi\":\"10.1145/2930238.2930255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines how accurately individual student differences in learning can be predicted from prior student learning activities. Bayesian Knowledge Tracing (BKT) predicts learner performance well and has often been employed to implement cognitive mastery. Standard BKT individualizes parameter estimates for knowledge components, but not for learners. Studies have shown that individualizing parameters for learners improves the quality of BKT fits and can lead to very different (and potentially better) practice recommendations. These studies typically derive best-fitting individualized learner parameters from learner performance in existing data logs, making the methods difficult to deploy in actual tutor use. In this work, we examine how well BKT parameters in a tutor lesson can be individualized based on learners' prior performance in reading instructional text, taking a pretest, and completing an earlier tutor lesson. We find that best-fitting individual difference estimates do not directly transfer well from one tutor lesson to another, but that predictive models incorporating variables extracted from prior reading, pretest and tutor activities perform well, when compared to a standard BKT model and a model with best-fitting individualized parameter estimates.\",\"PeriodicalId\":339100,\"journal\":{\"name\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2930238.2930255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2930238.2930255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Individual Differences for Learner Modeling in Intelligent Tutors from Previous Learner Activities
This study examines how accurately individual student differences in learning can be predicted from prior student learning activities. Bayesian Knowledge Tracing (BKT) predicts learner performance well and has often been employed to implement cognitive mastery. Standard BKT individualizes parameter estimates for knowledge components, but not for learners. Studies have shown that individualizing parameters for learners improves the quality of BKT fits and can lead to very different (and potentially better) practice recommendations. These studies typically derive best-fitting individualized learner parameters from learner performance in existing data logs, making the methods difficult to deploy in actual tutor use. In this work, we examine how well BKT parameters in a tutor lesson can be individualized based on learners' prior performance in reading instructional text, taking a pretest, and completing an earlier tutor lesson. We find that best-fitting individual difference estimates do not directly transfer well from one tutor lesson to another, but that predictive models incorporating variables extracted from prior reading, pretest and tutor activities perform well, when compared to a standard BKT model and a model with best-fitting individualized parameter estimates.