从以往的学习者活动预测智能导师对学习者建模的个体差异

Michael Eagle, Albert T. Corbett, John C. Stamper, B. McLaren, R. Baker, Angela Z. Wagner, Benjamin A. MacLaren, Aaron P. Mitchell
{"title":"从以往的学习者活动预测智能导师对学习者建模的个体差异","authors":"Michael Eagle, Albert T. Corbett, John C. Stamper, B. McLaren, R. Baker, Angela Z. Wagner, Benjamin A. MacLaren, Aaron P. Mitchell","doi":"10.1145/2930238.2930255","DOIUrl":null,"url":null,"abstract":"This study examines how accurately individual student differences in learning can be predicted from prior student learning activities. Bayesian Knowledge Tracing (BKT) predicts learner performance well and has often been employed to implement cognitive mastery. Standard BKT individualizes parameter estimates for knowledge components, but not for learners. Studies have shown that individualizing parameters for learners improves the quality of BKT fits and can lead to very different (and potentially better) practice recommendations. These studies typically derive best-fitting individualized learner parameters from learner performance in existing data logs, making the methods difficult to deploy in actual tutor use. In this work, we examine how well BKT parameters in a tutor lesson can be individualized based on learners' prior performance in reading instructional text, taking a pretest, and completing an earlier tutor lesson. We find that best-fitting individual difference estimates do not directly transfer well from one tutor lesson to another, but that predictive models incorporating variables extracted from prior reading, pretest and tutor activities perform well, when compared to a standard BKT model and a model with best-fitting individualized parameter estimates.","PeriodicalId":339100,"journal":{"name":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Predicting Individual Differences for Learner Modeling in Intelligent Tutors from Previous Learner Activities\",\"authors\":\"Michael Eagle, Albert T. Corbett, John C. Stamper, B. McLaren, R. Baker, Angela Z. Wagner, Benjamin A. MacLaren, Aaron P. Mitchell\",\"doi\":\"10.1145/2930238.2930255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines how accurately individual student differences in learning can be predicted from prior student learning activities. Bayesian Knowledge Tracing (BKT) predicts learner performance well and has often been employed to implement cognitive mastery. Standard BKT individualizes parameter estimates for knowledge components, but not for learners. Studies have shown that individualizing parameters for learners improves the quality of BKT fits and can lead to very different (and potentially better) practice recommendations. These studies typically derive best-fitting individualized learner parameters from learner performance in existing data logs, making the methods difficult to deploy in actual tutor use. In this work, we examine how well BKT parameters in a tutor lesson can be individualized based on learners' prior performance in reading instructional text, taking a pretest, and completing an earlier tutor lesson. We find that best-fitting individual difference estimates do not directly transfer well from one tutor lesson to another, but that predictive models incorporating variables extracted from prior reading, pretest and tutor activities perform well, when compared to a standard BKT model and a model with best-fitting individualized parameter estimates.\",\"PeriodicalId\":339100,\"journal\":{\"name\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2930238.2930255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2930238.2930255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本研究探讨如何准确地预测个体学生的学习差异,可以从学生以前的学习活动。贝叶斯知识追踪(BKT)可以很好地预测学习者的表现,并经常被用来实现认知掌握。标准的BKT对知识组件进行了个性化的参数估计,但对学习者却没有。研究表明,为学习者个性化参数可以提高BKT拟合的质量,并可能导致非常不同(可能更好)的练习建议。这些研究通常从现有数据日志中的学习者表现中得出最适合的个性化学习者参数,这使得这些方法难以在实际的导师使用中部署。在这项工作中,我们研究了基于学习者在阅读教学文本、参加预试和完成早期导师课程方面的先前表现,导师课程中的BKT参数可以在多大程度上个性化。我们发现,与标准BKT模型和具有最佳拟合个性化参数估计的模型相比,结合从先前阅读、预测试和导师活动中提取的变量的预测模型表现良好,但最佳拟合个体差异估计并不能很好地从一个导师课程直接转移到另一个导师课程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Individual Differences for Learner Modeling in Intelligent Tutors from Previous Learner Activities
This study examines how accurately individual student differences in learning can be predicted from prior student learning activities. Bayesian Knowledge Tracing (BKT) predicts learner performance well and has often been employed to implement cognitive mastery. Standard BKT individualizes parameter estimates for knowledge components, but not for learners. Studies have shown that individualizing parameters for learners improves the quality of BKT fits and can lead to very different (and potentially better) practice recommendations. These studies typically derive best-fitting individualized learner parameters from learner performance in existing data logs, making the methods difficult to deploy in actual tutor use. In this work, we examine how well BKT parameters in a tutor lesson can be individualized based on learners' prior performance in reading instructional text, taking a pretest, and completing an earlier tutor lesson. We find that best-fitting individual difference estimates do not directly transfer well from one tutor lesson to another, but that predictive models incorporating variables extracted from prior reading, pretest and tutor activities perform well, when compared to a standard BKT model and a model with best-fitting individualized parameter estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信