{"title":"基于拆分重组模块和扭曲结构微通道的3D打印高性能微混频器","authors":"Yuan Jiang, Yan Zhang","doi":"10.54941/ahfe1001085","DOIUrl":null,"url":null,"abstract":"Micromixers present essential roles in providing homogeneous mixtures in microfluidic systems. As the typical passive micromixers, the split-and-recombine (SAR) micromixer and twisted-architecture micromixer have the advantages of high mixing efficiency and low mixing consumption.To enhance the mixing performance , the twisted-architecture micromixer was optimized and improved by introducing 1 to 4 split-and-recombine modules. All micromixers in this work could be fabricated by LCD 3D printers, a rapid prototyping technology. Combined with mixing experiments and numerical simulation, it is proved that the mixing speed and mixing efficiency of these new micromixers are enhanced greatly. Among these new provided micromixers with a 10 mm mixing distance, the torsional micromixer with 4 split-and-recombine modules has the best mixing efficiency of more than 60% as well as a low mixing cost in the Reynolds number range of 0.1 to 100, which shows a quite good application prospects in the accurate and rapid microfluidic devices.","PeriodicalId":292077,"journal":{"name":"Intelligent Human Systems Integration (IHSI 2022) Integrating People and Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High performance micromixers by 3D printing based on split-and-recombine modules and twisted-architecture microchannel\",\"authors\":\"Yuan Jiang, Yan Zhang\",\"doi\":\"10.54941/ahfe1001085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micromixers present essential roles in providing homogeneous mixtures in microfluidic systems. As the typical passive micromixers, the split-and-recombine (SAR) micromixer and twisted-architecture micromixer have the advantages of high mixing efficiency and low mixing consumption.To enhance the mixing performance , the twisted-architecture micromixer was optimized and improved by introducing 1 to 4 split-and-recombine modules. All micromixers in this work could be fabricated by LCD 3D printers, a rapid prototyping technology. Combined with mixing experiments and numerical simulation, it is proved that the mixing speed and mixing efficiency of these new micromixers are enhanced greatly. Among these new provided micromixers with a 10 mm mixing distance, the torsional micromixer with 4 split-and-recombine modules has the best mixing efficiency of more than 60% as well as a low mixing cost in the Reynolds number range of 0.1 to 100, which shows a quite good application prospects in the accurate and rapid microfluidic devices.\",\"PeriodicalId\":292077,\"journal\":{\"name\":\"Intelligent Human Systems Integration (IHSI 2022) Integrating People and Intelligent Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Human Systems Integration (IHSI 2022) Integrating People and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54941/ahfe1001085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Human Systems Integration (IHSI 2022) Integrating People and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe1001085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High performance micromixers by 3D printing based on split-and-recombine modules and twisted-architecture microchannel
Micromixers present essential roles in providing homogeneous mixtures in microfluidic systems. As the typical passive micromixers, the split-and-recombine (SAR) micromixer and twisted-architecture micromixer have the advantages of high mixing efficiency and low mixing consumption.To enhance the mixing performance , the twisted-architecture micromixer was optimized and improved by introducing 1 to 4 split-and-recombine modules. All micromixers in this work could be fabricated by LCD 3D printers, a rapid prototyping technology. Combined with mixing experiments and numerical simulation, it is proved that the mixing speed and mixing efficiency of these new micromixers are enhanced greatly. Among these new provided micromixers with a 10 mm mixing distance, the torsional micromixer with 4 split-and-recombine modules has the best mixing efficiency of more than 60% as well as a low mixing cost in the Reynolds number range of 0.1 to 100, which shows a quite good application prospects in the accurate and rapid microfluidic devices.