低摩擦条件下铰接式重型车辆的侧滑估计

Graeme Morrison, D. Cebon
{"title":"低摩擦条件下铰接式重型车辆的侧滑估计","authors":"Graeme Morrison, D. Cebon","doi":"10.1109/IVS.2015.7225664","DOIUrl":null,"url":null,"abstract":"Active safety systems for Heavy Goods Vehicles (HGVs), like passenger cars, often require an accurate estimate of sideslip angle. However, very little research has been published on HGV sideslip estimation in low friction conditions. This paper proposes three nonlinear Kalman Filters to estimate the tractor sideslip angle of a tractor-semitrailer combination. Performance is compared in simulation to a linear Kalman Filter in both high and low friction conditions. An Unscented Kalman Filter using a yaw-roll vehicle model and nonlinear tire model is found to accurately estimate sideslip in all maneuvers simulated, significantly outperforming the linear Kalman Filter.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sideslip estimation for articulated heavy vehicles in low friction conditions\",\"authors\":\"Graeme Morrison, D. Cebon\",\"doi\":\"10.1109/IVS.2015.7225664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active safety systems for Heavy Goods Vehicles (HGVs), like passenger cars, often require an accurate estimate of sideslip angle. However, very little research has been published on HGV sideslip estimation in low friction conditions. This paper proposes three nonlinear Kalman Filters to estimate the tractor sideslip angle of a tractor-semitrailer combination. Performance is compared in simulation to a linear Kalman Filter in both high and low friction conditions. An Unscented Kalman Filter using a yaw-roll vehicle model and nonlinear tire model is found to accurately estimate sideslip in all maneuvers simulated, significantly outperforming the linear Kalman Filter.\",\"PeriodicalId\":294701,\"journal\":{\"name\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2015.7225664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

重型货车(hgv)的主动安全系统,就像乘用车一样,通常需要准确估计侧滑角。然而,关于HGV在低摩擦条件下的侧滑估计的研究很少。本文提出了三种非线性卡尔曼滤波器来估计牵引车-半挂车组合的牵引车侧滑角。仿真比较了线性卡尔曼滤波器在高摩擦和低摩擦条件下的性能。采用车辆横摇模型和非线性轮胎模型的Unscented卡尔曼滤波器能准确估计所有模拟机动中的侧滑,显著优于线性卡尔曼滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sideslip estimation for articulated heavy vehicles in low friction conditions
Active safety systems for Heavy Goods Vehicles (HGVs), like passenger cars, often require an accurate estimate of sideslip angle. However, very little research has been published on HGV sideslip estimation in low friction conditions. This paper proposes three nonlinear Kalman Filters to estimate the tractor sideslip angle of a tractor-semitrailer combination. Performance is compared in simulation to a linear Kalman Filter in both high and low friction conditions. An Unscented Kalman Filter using a yaw-roll vehicle model and nonlinear tire model is found to accurately estimate sideslip in all maneuvers simulated, significantly outperforming the linear Kalman Filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信