Irene Mazzilli, Gianmario Mirabile, P. Lino, G. Maione, A. Rybakov, N. Svishchev, Ileana Blanco, L. De Bellis, A. Luvisi
{"title":"基于神经网络的橄榄树无人机检测苛养木杆菌病","authors":"Irene Mazzilli, Gianmario Mirabile, P. Lino, G. Maione, A. Rybakov, N. Svishchev, Ileana Blanco, L. De Bellis, A. Luvisi","doi":"10.1109/CNNA49188.2021.9610752","DOIUrl":null,"url":null,"abstract":"This paper presents a fully automated procedure for the detection of trees affected by Xylella Fastidiosa using UAVs and convolutional neural networks. Drones are able to collect an adequate number of olive leaf images to detect the presence of disease symptoms. Several neural networks are trained to compare results and determine the best solution.","PeriodicalId":325231,"journal":{"name":"2021 17th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"UAV Inspection of Olive Trees for the Detection of Xylella Fastidiosa Disease Using Neural Networks\",\"authors\":\"Irene Mazzilli, Gianmario Mirabile, P. Lino, G. Maione, A. Rybakov, N. Svishchev, Ileana Blanco, L. De Bellis, A. Luvisi\",\"doi\":\"10.1109/CNNA49188.2021.9610752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a fully automated procedure for the detection of trees affected by Xylella Fastidiosa using UAVs and convolutional neural networks. Drones are able to collect an adequate number of olive leaf images to detect the presence of disease symptoms. Several neural networks are trained to compare results and determine the best solution.\",\"PeriodicalId\":325231,\"journal\":{\"name\":\"2021 17th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA49188.2021.9610752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA49188.2021.9610752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UAV Inspection of Olive Trees for the Detection of Xylella Fastidiosa Disease Using Neural Networks
This paper presents a fully automated procedure for the detection of trees affected by Xylella Fastidiosa using UAVs and convolutional neural networks. Drones are able to collect an adequate number of olive leaf images to detect the presence of disease symptoms. Several neural networks are trained to compare results and determine the best solution.