基于fpga的稀疏矩阵向量乘法加速器的k-NN文本分类

Kevin Townsend, S. Sun, Tyler Johnson, Osama G. Attia, Phillip H. Jones, Joseph Zambreno
{"title":"基于fpga的稀疏矩阵向量乘法加速器的k-NN文本分类","authors":"Kevin Townsend, S. Sun, Tyler Johnson, Osama G. Attia, Phillip H. Jones, Joseph Zambreno","doi":"10.1109/EIT.2015.7293349","DOIUrl":null,"url":null,"abstract":"Text classification is an important enabling technology for a wide range of applications such as Internet search, email filtering, network intrusion detection, and data mining electronic documents in general. The k Nearest Neighbors (k-NN) text classification algorithm is among the most accurate classification approaches, but is also among the most computationally expensive. In this paper, we propose accelerating k-NN using a novel reconfigurable hardware based architecture. More specifically, we accelerate a k-NN application's core with an FPGA-based sparse matrix vector multiplication coprocessor. On average our implementation shows a speed up factor of 15 over a naïve single threaded CPU implementation of k-NN text classification for our datasets, and a speed up factor of 1.5 over a 32-threaded parallelized CPU implementation.","PeriodicalId":415614,"journal":{"name":"2015 IEEE International Conference on Electro/Information Technology (EIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"k-NN text classification using an FPGA-based sparse matrix vector multiplication accelerator\",\"authors\":\"Kevin Townsend, S. Sun, Tyler Johnson, Osama G. Attia, Phillip H. Jones, Joseph Zambreno\",\"doi\":\"10.1109/EIT.2015.7293349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text classification is an important enabling technology for a wide range of applications such as Internet search, email filtering, network intrusion detection, and data mining electronic documents in general. The k Nearest Neighbors (k-NN) text classification algorithm is among the most accurate classification approaches, but is also among the most computationally expensive. In this paper, we propose accelerating k-NN using a novel reconfigurable hardware based architecture. More specifically, we accelerate a k-NN application's core with an FPGA-based sparse matrix vector multiplication coprocessor. On average our implementation shows a speed up factor of 15 over a naïve single threaded CPU implementation of k-NN text classification for our datasets, and a speed up factor of 1.5 over a 32-threaded parallelized CPU implementation.\",\"PeriodicalId\":415614,\"journal\":{\"name\":\"2015 IEEE International Conference on Electro/Information Technology (EIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Electro/Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT.2015.7293349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2015.7293349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

文本分类是一项重要的使能技术,适用于Internet搜索、电子邮件过滤、网络入侵检测和电子文档数据挖掘等广泛的应用。k近邻(k- nn)文本分类算法是最准确的分类方法之一,但也是计算成本最高的方法之一。在本文中,我们提出使用一种新的可重构硬件架构来加速k-NN。更具体地说,我们使用基于fpga的稀疏矩阵向量乘法协处理器加速了k-NN应用程序的核心。平均而言,我们的实现比naïve单线程CPU实现的k-NN文本分类数据集的速度提高了15倍,比32线程并行CPU实现的速度提高了1.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
k-NN text classification using an FPGA-based sparse matrix vector multiplication accelerator
Text classification is an important enabling technology for a wide range of applications such as Internet search, email filtering, network intrusion detection, and data mining electronic documents in general. The k Nearest Neighbors (k-NN) text classification algorithm is among the most accurate classification approaches, but is also among the most computationally expensive. In this paper, we propose accelerating k-NN using a novel reconfigurable hardware based architecture. More specifically, we accelerate a k-NN application's core with an FPGA-based sparse matrix vector multiplication coprocessor. On average our implementation shows a speed up factor of 15 over a naïve single threaded CPU implementation of k-NN text classification for our datasets, and a speed up factor of 1.5 over a 32-threaded parallelized CPU implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信