基于高斯核和网格搜索的混合密度自适应聚类

Varsha R Jenni, Akhil Dua, G. Shobha, Jyoti Shetty, R. Dev
{"title":"基于高斯核和网格搜索的混合密度自适应聚类","authors":"Varsha R Jenni, Akhil Dua, G. Shobha, Jyoti Shetty, R. Dev","doi":"10.1109/RTEICT52294.2021.9573728","DOIUrl":null,"url":null,"abstract":"Density-based spatial clustering of data with noise (DBSCAN) is a popular clustering algorithm that groups data points which are close together using two parameters eps - which is the radius of each cluster, and Minpts, which is the minimum number of points in each cluster. However, the performance of DBSCAN reduces for the datasets with varying density clusters. This paper proposes the implementation of a distributed and adaptive DBSCAN algorithm on the HPCC Systems platform. The proposed approach uses techniques such as grid search and Gaussian kernel to search optimized values for the threshold density of clusters, thus eliminating the requirement for users to specify the parameters. Further, the experimental investigation suggests that proposed ADBSAN performs better compared to existing ADBSCAN implementations using k-dist and Gaussian kernels.","PeriodicalId":191410,"journal":{"name":"2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid Density-based Adaptive Clustering using Gaussian Kernel and Grid Search\",\"authors\":\"Varsha R Jenni, Akhil Dua, G. Shobha, Jyoti Shetty, R. Dev\",\"doi\":\"10.1109/RTEICT52294.2021.9573728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density-based spatial clustering of data with noise (DBSCAN) is a popular clustering algorithm that groups data points which are close together using two parameters eps - which is the radius of each cluster, and Minpts, which is the minimum number of points in each cluster. However, the performance of DBSCAN reduces for the datasets with varying density clusters. This paper proposes the implementation of a distributed and adaptive DBSCAN algorithm on the HPCC Systems platform. The proposed approach uses techniques such as grid search and Gaussian kernel to search optimized values for the threshold density of clusters, thus eliminating the requirement for users to specify the parameters. Further, the experimental investigation suggests that proposed ADBSAN performs better compared to existing ADBSCAN implementations using k-dist and Gaussian kernels.\",\"PeriodicalId\":191410,\"journal\":{\"name\":\"2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTEICT52294.2021.9573728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT52294.2021.9573728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于密度的带噪声数据空间聚类(DBSCAN)是一种流行的聚类算法,它使用两个参数eps(每个聚类的半径)和Minpts(每个聚类的最小点数)对靠近的数据点进行分组。然而,对于具有不同密度簇的数据集,DBSCAN的性能会降低。本文提出了一种在HPCC系统平台上实现分布式自适应DBSCAN算法。该方法使用网格搜索和高斯核等技术来搜索聚类阈值密度的优化值,从而消除了用户指定参数的要求。此外,实验研究表明,与使用k-dist和高斯核的现有ADBSCAN实现相比,所提出的ADBSAN具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Density-based Adaptive Clustering using Gaussian Kernel and Grid Search
Density-based spatial clustering of data with noise (DBSCAN) is a popular clustering algorithm that groups data points which are close together using two parameters eps - which is the radius of each cluster, and Minpts, which is the minimum number of points in each cluster. However, the performance of DBSCAN reduces for the datasets with varying density clusters. This paper proposes the implementation of a distributed and adaptive DBSCAN algorithm on the HPCC Systems platform. The proposed approach uses techniques such as grid search and Gaussian kernel to search optimized values for the threshold density of clusters, thus eliminating the requirement for users to specify the parameters. Further, the experimental investigation suggests that proposed ADBSAN performs better compared to existing ADBSCAN implementations using k-dist and Gaussian kernels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信