{"title":"节能型电液系统负载保持阀的平稳分离方法","authors":"D. Hagen, D. Padovani","doi":"10.3390/IECAT2020-08478","DOIUrl":null,"url":null,"abstract":"A novel self-contained, electro-hydraulic cylinder drive capable of passive load-holding, four-quadrant operations, and energy recovery was presented recently and implemented successfully. This solution improved greatly the energy efficiency and motion control in comparison to state-of-the-art, valve-controlled systems typically used in mobile or offshore applications. The passive load-holding function was realized by two pilot-operated check valves placed on the cylinder ports, where their pilot pressure is selected by a dedicated on/off electro valve. These valves can maintain the actuator position without consuming energy, as demonstrated on a single-boom crane. However, a reduced drop of about 1 mm was observed in the actuator position when the load-holding valves are disengaged to enable the piston motion using closed-loop position control. Such a sudden variation in the piston position that is triggered by switching the load-holding valves can increase up to 4 mm when open-loop position control is chosen. For these reasons, this research paper proposes an improved control strategy for disengaging the passive load-holding functionality smoothly (i.e., by removing this unwanted drop of the piston). A two-step pressure control strategy is used to switch the pilot-operated check valves. The proposed experimental validation of this method eliminates the piston position’s drop highlighted before and improves the motion control, mainly when operating the crane in open-loop. Theses outcomes benefit those systems where the kinematics amplifies the piston motion significantly (e.g., in aerial platforms) increasing, therefore, the operational safety.","PeriodicalId":152837,"journal":{"name":"Proceedings of 1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A method for smoothly disengaging the load-holding valves of energy-efficient electro-hydraulic systems\",\"authors\":\"D. Hagen, D. Padovani\",\"doi\":\"10.3390/IECAT2020-08478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel self-contained, electro-hydraulic cylinder drive capable of passive load-holding, four-quadrant operations, and energy recovery was presented recently and implemented successfully. This solution improved greatly the energy efficiency and motion control in comparison to state-of-the-art, valve-controlled systems typically used in mobile or offshore applications. The passive load-holding function was realized by two pilot-operated check valves placed on the cylinder ports, where their pilot pressure is selected by a dedicated on/off electro valve. These valves can maintain the actuator position without consuming energy, as demonstrated on a single-boom crane. However, a reduced drop of about 1 mm was observed in the actuator position when the load-holding valves are disengaged to enable the piston motion using closed-loop position control. Such a sudden variation in the piston position that is triggered by switching the load-holding valves can increase up to 4 mm when open-loop position control is chosen. For these reasons, this research paper proposes an improved control strategy for disengaging the passive load-holding functionality smoothly (i.e., by removing this unwanted drop of the piston). A two-step pressure control strategy is used to switch the pilot-operated check valves. The proposed experimental validation of this method eliminates the piston position’s drop highlighted before and improves the motion control, mainly when operating the crane in open-loop. Theses outcomes benefit those systems where the kinematics amplifies the piston motion significantly (e.g., in aerial platforms) increasing, therefore, the operational safety.\",\"PeriodicalId\":152837,\"journal\":{\"name\":\"Proceedings of 1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications\",\"volume\":\"182 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/IECAT2020-08478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/IECAT2020-08478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A method for smoothly disengaging the load-holding valves of energy-efficient electro-hydraulic systems
A novel self-contained, electro-hydraulic cylinder drive capable of passive load-holding, four-quadrant operations, and energy recovery was presented recently and implemented successfully. This solution improved greatly the energy efficiency and motion control in comparison to state-of-the-art, valve-controlled systems typically used in mobile or offshore applications. The passive load-holding function was realized by two pilot-operated check valves placed on the cylinder ports, where their pilot pressure is selected by a dedicated on/off electro valve. These valves can maintain the actuator position without consuming energy, as demonstrated on a single-boom crane. However, a reduced drop of about 1 mm was observed in the actuator position when the load-holding valves are disengaged to enable the piston motion using closed-loop position control. Such a sudden variation in the piston position that is triggered by switching the load-holding valves can increase up to 4 mm when open-loop position control is chosen. For these reasons, this research paper proposes an improved control strategy for disengaging the passive load-holding functionality smoothly (i.e., by removing this unwanted drop of the piston). A two-step pressure control strategy is used to switch the pilot-operated check valves. The proposed experimental validation of this method eliminates the piston position’s drop highlighted before and improves the motion control, mainly when operating the crane in open-loop. Theses outcomes benefit those systems where the kinematics amplifies the piston motion significantly (e.g., in aerial platforms) increasing, therefore, the operational safety.