{"title":"结合差分隐私和安全多方计算","authors":"Martin Pettai, Peeter Laud","doi":"10.1145/2818000.2818027","DOIUrl":null,"url":null,"abstract":"We consider how to perform privacy-preserving analyses on private data from different data providers and containing personal information of many different individuals. We combine differential privacy and secret sharing based secure multiparty computation in the same system to protect the privacy of both the data providers and the individuals. We have implemented a prototype of this combination and have found that the overhead of adding differential privacy to secure multiparty computation is small enough to be usable in practice.","PeriodicalId":338725,"journal":{"name":"Proceedings of the 31st Annual Computer Security Applications Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Combining Differential Privacy and Secure Multiparty Computation\",\"authors\":\"Martin Pettai, Peeter Laud\",\"doi\":\"10.1145/2818000.2818027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider how to perform privacy-preserving analyses on private data from different data providers and containing personal information of many different individuals. We combine differential privacy and secret sharing based secure multiparty computation in the same system to protect the privacy of both the data providers and the individuals. We have implemented a prototype of this combination and have found that the overhead of adding differential privacy to secure multiparty computation is small enough to be usable in practice.\",\"PeriodicalId\":338725,\"journal\":{\"name\":\"Proceedings of the 31st Annual Computer Security Applications Conference\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 31st Annual Computer Security Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818000.2818027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st Annual Computer Security Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818000.2818027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining Differential Privacy and Secure Multiparty Computation
We consider how to perform privacy-preserving analyses on private data from different data providers and containing personal information of many different individuals. We combine differential privacy and secret sharing based secure multiparty computation in the same system to protect the privacy of both the data providers and the individuals. We have implemented a prototype of this combination and have found that the overhead of adding differential privacy to secure multiparty computation is small enough to be usable in practice.