结合差分隐私和安全多方计算

Martin Pettai, Peeter Laud
{"title":"结合差分隐私和安全多方计算","authors":"Martin Pettai, Peeter Laud","doi":"10.1145/2818000.2818027","DOIUrl":null,"url":null,"abstract":"We consider how to perform privacy-preserving analyses on private data from different data providers and containing personal information of many different individuals. We combine differential privacy and secret sharing based secure multiparty computation in the same system to protect the privacy of both the data providers and the individuals. We have implemented a prototype of this combination and have found that the overhead of adding differential privacy to secure multiparty computation is small enough to be usable in practice.","PeriodicalId":338725,"journal":{"name":"Proceedings of the 31st Annual Computer Security Applications Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"Combining Differential Privacy and Secure Multiparty Computation\",\"authors\":\"Martin Pettai, Peeter Laud\",\"doi\":\"10.1145/2818000.2818027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider how to perform privacy-preserving analyses on private data from different data providers and containing personal information of many different individuals. We combine differential privacy and secret sharing based secure multiparty computation in the same system to protect the privacy of both the data providers and the individuals. We have implemented a prototype of this combination and have found that the overhead of adding differential privacy to secure multiparty computation is small enough to be usable in practice.\",\"PeriodicalId\":338725,\"journal\":{\"name\":\"Proceedings of the 31st Annual Computer Security Applications Conference\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 31st Annual Computer Security Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818000.2818027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st Annual Computer Security Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818000.2818027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

我们考虑如何对来自不同数据提供者的包含许多不同个人信息的私人数据执行隐私保护分析。我们在同一系统中结合差分隐私和基于秘密共享的安全多方计算,以保护数据提供者和个人的隐私。我们已经实现了这种组合的原型,并发现为安全多方计算添加差分隐私的开销足够小,可以在实践中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Differential Privacy and Secure Multiparty Computation
We consider how to perform privacy-preserving analyses on private data from different data providers and containing personal information of many different individuals. We combine differential privacy and secret sharing based secure multiparty computation in the same system to protect the privacy of both the data providers and the individuals. We have implemented a prototype of this combination and have found that the overhead of adding differential privacy to secure multiparty computation is small enough to be usable in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信