基于机器学习算法的语音情感识别研究

S. S. Amiripalli, P. Likhitha, Sisankita Patnaik, Suresh Babu, Rampay. Venkatarao
{"title":"基于机器学习算法的语音情感识别研究","authors":"S. S. Amiripalli, P. Likhitha, Sisankita Patnaik, Suresh Babu, Rampay. Venkatarao","doi":"10.3233/apc210225","DOIUrl":null,"url":null,"abstract":"Speech emotion detection has been extremely relevant in today’s digital culture in recent years. RAVDESS, TESS, and SAVEE Datasets were used to train the model in our project. To determine the precision of each algorithm with each dataset, we looked at ten separate Machine Learning Algorithms. Following that, we cleaned the datasets by using the mask feature to eliminate unnecessary background noise, and then we applied all 10 algorithms to this clean speech dataset to improve accuracy. Then we look at the accuracies of all ten algorithms and see which one is the greatest. Finally, by using the algorithm, we could calculate the number of sound files correlated with each of the emotions described in those datasets.","PeriodicalId":429440,"journal":{"name":"Recent Trends in Intensive Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Speech Emotion Recognitions on Machine Learning Algorithms\",\"authors\":\"S. S. Amiripalli, P. Likhitha, Sisankita Patnaik, Suresh Babu, Rampay. Venkatarao\",\"doi\":\"10.3233/apc210225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech emotion detection has been extremely relevant in today’s digital culture in recent years. RAVDESS, TESS, and SAVEE Datasets were used to train the model in our project. To determine the precision of each algorithm with each dataset, we looked at ten separate Machine Learning Algorithms. Following that, we cleaned the datasets by using the mask feature to eliminate unnecessary background noise, and then we applied all 10 algorithms to this clean speech dataset to improve accuracy. Then we look at the accuracies of all ten algorithms and see which one is the greatest. Finally, by using the algorithm, we could calculate the number of sound files correlated with each of the emotions described in those datasets.\",\"PeriodicalId\":429440,\"journal\":{\"name\":\"Recent Trends in Intensive Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Trends in Intensive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/apc210225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Intensive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/apc210225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,语音情感检测在当今的数字文化中有着极其重要的意义。在我们的项目中,我们使用了RAVDESS、TESS和SAVEE数据集来训练模型。为了确定每个算法对每个数据集的精度,我们研究了十种不同的机器学习算法。接下来,我们利用掩码特征对数据集进行清理,去除不必要的背景噪声,然后将所有10种算法应用于清理后的语音数据集,以提高准确率。然后我们看看所有10种算法的准确性,看看哪一种是最好的。最后,通过使用算法,我们可以计算出与这些数据集中描述的每种情绪相关的声音文件的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Speech Emotion Recognitions on Machine Learning Algorithms
Speech emotion detection has been extremely relevant in today’s digital culture in recent years. RAVDESS, TESS, and SAVEE Datasets were used to train the model in our project. To determine the precision of each algorithm with each dataset, we looked at ten separate Machine Learning Algorithms. Following that, we cleaned the datasets by using the mask feature to eliminate unnecessary background noise, and then we applied all 10 algorithms to this clean speech dataset to improve accuracy. Then we look at the accuracies of all ten algorithms and see which one is the greatest. Finally, by using the algorithm, we could calculate the number of sound files correlated with each of the emotions described in those datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信